A An Integrated Hydrofoil and Propeller Design Tool for the Windows/™
/QD caf((- 9()7 Environment

by
David R. Beckett

B., Mechanical Engineering,
General Motors Institute, 1¢81

SUBMITTED TO Tt E DEPARTMENT OF OCEAN ENGINEERING IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF

NAVAL ENGINEER
AND
MASTER OF SCIENCE IN NAVAL ARCHITECTUR!
AND MARINE ENGINEERING

. AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JUNE 1996

© 1996 David R. Begkett. All rights reserved.

The author hereby grants te MIT permission to reproduce
and to distribute publiclv paper and electronic
copies of this thesis dgcument in whole or in part.

— g
Signature of Author ®AW/E£KE M |

Deparntment of Ocean Engineering

| [\ May 10, 1996
Certified by /LM)L\—-\ < \\-@‘*N —_—

Justin E. Kenwin
Professor of Ocean Engineering
Thesis Supervisor

Accepted by . -

- A. Douglas Carmichael
Professor of Ocean Engincering
C airman Department Graduate Committee

\

UTIO A
Approved for public release; DTIC QUALITY INSPECTED 4°
Distribution Unlimited

An Integrated Hydrefoll and Prepelier Design Tool for the Windows™
Eavireamest

by
David R. Beckett

Submitted to the Department of Ocean Engineering
on May 10, 1996 in Partial Fulfiliment of the
Requirements for the Degrees of Naval Engineer and
Master of Science in Naval Architecture
and Marine Engineering

ABSTRACT

An investigation of the feasibility and desirability of the employment of personal
computers in brydrofoil and propelier design was performed. The feasibility and
desirability of the employment of personal computers in hydrofoil and propeller design
was demonstrated by the seamless linking of the MIT Propulsor Lifting Line Code and the
MIT Propelier Blade Design Code into a single Microsoft- Windows™ based application.

Thesis Supervisor: Justin E. Karwin
Title: Professor of Ocean Engineering

i

é
i

3

PR

ACKNOWLEDGMENTS

The author would like to thank his wife, Anne, for her unwavering devotion and support
over the past 16 years, and particularly over the span of this thesis project.

The author would also like to thank his thesis advisor, Professor Justin E. Kerwin, for

Finally | would like to thank Mesars. Scott Black, William Ramsey, and Todd Taylor for
providing invalusbie technical insight in the field of Marine Hydrodynamics.

M

L1
1.2
1.3
14

22

2.2.1
222
223
224
225
23

23.1

31

1l
32

lali
33

331
332
333
334
335
LR X
337
s

4.1
42

TABLE OF CONTENTS
Title

Introduction
The history of screw propulsion.
The history of digital computers.
Personal computers.
The employment of personal computers in hydrofoil
and propeller design.

Hydrofoil Design Applications
The Hydrofoil Vortex Lattice Lifting Line Program.
A comparison of VLL and the Windows™
version of VLL.
The structure of a8 Windows™ program.
The WinMain function.
The MainWndProc function.
The WMCommand_Handler function.
Dialog functions.
Output functions.
The 2D Vornex/Source Lattice with Lighthill Correction
Program.
A comparison of VLMLE and the Windows™
version of VLMLE.

Propeller Design Applications

The MIT Propulsor Lifting Line Program.
A brief description of PLL.

The MIT Propeller Blade Design Code.
A brief description of PBD.

The Integrated PLL/PBD Windows™ application.
The Blade and Wake Viewer Windows.
Edit Dislog Boxes.
Running PLL.
The Output and Plot Viewer Windows.
The MIT-PLL Help Program.
The MIT-PLL Editor Program.
Running PBD.

Conclusions and Further Work
Conclusions.
Fusther Work.

Page

13
13
13
14
15

18
18
18

23
24
24
25
25
25
26

27
R}
31
3l
35

43

52
57

61
63

333

a. . ..

|
b «
’ .
S
e
D' «
’ q
b

cw

¥

A
Al
A2
Al
Ad
AS
A5l
AS2
AS3
A6

B.1

B.1.1
B.1.2
B.13

B.2
B3
B4

Cli

C.1l
C.12
Ci3
C2

c21

C22
C23
C3

Cll
C3.2
C33
Cl4
Cls
Cleé
Ci7?

Bibliography

Hydrofoil Vortex Lattice Lifting Linec Program Code
The VLL WinMain function.
The VLL MainWndProc function.
The VLL WMCommand _Handler function.
The VLL dialog functions.
The VLL output functions.
The VLL paint_data_box function.
The VLL paint_graphs function.

80

82
83
9
102
122
131
132
137

The VLL print_data_box and print_graphs function. 159

VLL program listings.

161

2D Vortex/Source Lattice with Lighthill Correction Program Code 163

The VLMLE WinMain, MainWndProc, and
WMCommand _Handler functions.

A comparison of the VLL and VLMLE WinMain

functions.
A comparison of the VLL and VLMLE
MainWndProc functions.
A comparison of the VLL and VLMLE
WMCommand Handler functions.

The VLMLE dialog and output functions.

The VLMLE FORTRAN program.

VLMLE program listings.

PLL Program Code
The PLL WinMain, Frame WndProc, and
WMCommand_Handler functions.
The PLL WnMain function.
The PLL FrameWndProc function.
The PLL WMCommand Handler function.
The PLL MDi Child Window Proceduf® functions.
The PLL MD{ChildBlade WndProc and
MDiChild Wake WndProc functions.
The PLL MDIChildOutput WndProc function.
The PLL MDiChildPlot WndProc function.
The PLL dialog functions.
The Run Time Settings dislog box functions.
The Expanded Area Ratio dislog box functions.
The Glauert Cocflicients dialog box functions.

164
165
165
17

180
184
189

191
192

193
200
208
258
259

262
266
274
275
278
280

The PBD Skew/Rake Settings dialog box functions. 282

The Stecpness dialog box functions.
The Unioad Coefficients dialog box functions.
The Defauk Settings dislog box functions.

286
289
291

Ci8 The Duct Settings dialog box functions. 296

C.39 The PBD Settings dialog box functions. 298
C3.10 The Project Settings dialog box functions. 302 » |
cin The ABS Rules Strength Settings dialog box 306 o
functions.
C.3.12 The PBD Plot Geometry dialog box functions. 308
C3.13 The Optimization Data dialog box functions. 310
C3.14 The About dialog box functions. 3 ’
C4 The PLL output functions. 313
ca4l The paintbid function. 315
C4.2 The paintwake function. 329
C43 The paintplot function. 340
C44 The printplot function. 353 »
CAs The paintout function. 354
C4.6 The printout function. 359
C4.7 The paint_graphs function. 361
Cca4s The paint_hub function. |
C49 The paint_gsp function. 375]
C.4.10 The paint_vep function. 383
caln The paint_cmv function. 389
C4.12 The paint_rdc function. 393
C4.13 The write_output _file function. 402
C4.14 The write_pbd_files function. 404 » ©
C.sS Miscellaneous PLL functions. 409
C.5.1 The WMVScroli_Handler function. an
Cs.2 The WMKeydown_Handler function. 413
Cs3 The write_input _file function. 414
Cs4 The write_project_file function. 417 »’
Cs.S The write_pbdadmin_file function. 421 :
CS.6 The write_defaul_file function. 425
Cs? The write_wakecak _file function. 427
C.53 The write_ductforc_file function. 427
C.5.9 The write_absrules_file function. 428 »
C.5.10 The write_thattorg_file function. 429
Cs.11 The write_whalirc_file function. 430
Cs.12 The write_misc_files function. 430
Cs.13 The read_blade_file function. 433
CS.14 The read_wake_file function 437 »
C.S.18 The read_input_file function. 440
C.5.16 The read_project_file function. 445
csi? The read_piot_file Amction. 455
Cs.18 The read_glavert_file function. 457
CSs.19 The read_unload_det_file function. 457 »
C.5.20 The initiakze fAmnction. 459
c.s21 The delete_files fanction. 46}
9

Cé

The PLL and PBD FORTRAN programs.

C? PLL program listings.
C.71 MIT-PLL program listings.
C.12 MIT-PLL Editor program listings.
C13 MIT-PLL Help program listings.
10
9 . o ® e

469
471
473

.i

LIST OF FIGURES

Figure Title Page » ‘ '
1-1 DOS Prompt 15 ®
1-2 Typical Windows™ based application 16 ,
2-1 VLL Sampie Output 19 > '
22 Windows™ VLL Sample Output 19 :
23 Windows™ VLL Data File 20
2-4 Windows™ VLL Geometry Dialog Box 21
2-5 Windows™ VLL with Help displayed 22
2-6 Windows™ Program Structure 24 » ‘
2-7 Windows™ VLMLE Sample Output 27
2-8 Windows™ VLMLE Parameters Dialog Box 28
2-9 Windows™ VLMLE with Help displayed 30
3-1 Sample PLL Overall Input File 32 ® .
32 Sample PLL Blade Input File 32
3-3 Sample PLL Wake Input File 33
3-4 Sample PBD Administrative File 35
3-5 Sample PBD Velocity Input File 36
3-6 Sample PBD B-spline Control Polygon File 36 » ® ,
3-7 Sample PBD Circumferential Mean Blade Velocity File 37
3-8 Sample PBD Screen Output 39
3-9 Windows™ PLL 41
3-10 Windows™ PLL with Tiled Child Windows 42
3-11 Windows™ PLL with Iconified Child Windows 43 . ,
3-12 Windows™ PLL Blade Viewer 44
3-13 Windows™ PLL Wake Viewer 45 '
3-14 Windows™ PLL Multiple Component Project Settings Dialog Box 46
3-18 Windows™ PLL Mukiple Component Default Settings Dialog Box 47
3-16 Windows™ PLL Duct Settings Dialog Box 48 » ‘
317 Windows™ PLL ABS Strength Settings Dialog Box 49
3-18 Windows™ PLL PBD Settings Dialog Box 50
3-19 Windows™ PLL PBD Skew/Rake Settings Dialog Box 51
3-20 Windows™ PLL Runtime Settings Dialog Box 52
3-21 Windows™ PLL Optimization Deta Dialog Box 53
3-22 Windows™ PLL Expanded Ares Ratio Dislog Box 54 ’ '
3-23 Windows™ PLL Glauert Coefficients NDialog Box 55
3-24 Windows™ PLL Steepness Dialog Box - 56
3-25 Windows™ PLL Uniloed Coeflicients Dialog Box 57
3-26 Windows™ PLL Output Viewer 58
27 Windows™ PLL Plot Viewer 59 » '
3-28 Windows™ PLL File Pull Down Menu 61

n

]

3-29 Windows™ MIT-PLL Help Program 62

3-30 Windows™ MIT-PLL Help Program with Help Displayed 63
3-31 MIT-PI L Editor 64
3-32 MIT-PLL Edit Process 65
3-33 MIT-PLL Wake File Edit Process 66
3-34 MIT-PLL Stator File Edit Process 67
3-35 MIT-PLL Input File Edit Process 68
3-36 MIT-PLL Two Component - Ducted Input Dialog Box 69
3-37 MIT-PLL Output Viewer with PBD Output 70
3-38 MIT-PLL Plot Viewer with PBD Input Blade 71
3-39 MIT-PLL Plot Viewer with PBD Output Blade and Centerbody 72
3-40 MIT-PLL Plot Viewer with PBD Control Point Velocity Plot 72
341 MIT-PLL Plot Viewer with PBD Bound Circulation Contour Plot 73
3-42 MIT-PLL Plot Viewer with PBD Radial Circulation Distribution 73
Plot
3-43 MIT-PLL Plot Viewer with Circumferential Mean Velocity Plot 74
3-44 MIT-PLL PBD Plot Geometry Dialog Box 75
3-45 MIT-PLL PBD Plot with Altered Orientation and Scale 76
A-1 Windows™ VLL with Error Warning displayed 113
A-2 Windows™ VLL with About dialog box displayed 120
A-3 VLL Geometry Dialog Box in BORLAND® Resource 127
Workshop™

1. INTRODUCTION

1.1 The history of screw prepulsiea.

The first use of mechanical propuision at sea dates back at least 2000 years. The
Roman army recognized the advantages of independence from wind and current. Before
the birth of Christ they used paddle-whee! driven, oxen powered boats to transport
soldiers in the Mediterranean Sea. Mechanical propulsion took the next great leap
forward in 1783 at Lyons, France, where a steam engine was used to propel a paddle-
wheel driven barge on the Rhone river.

Archimedes and Leonardo da Vinci are both credited with the initial concepts of
screw propulsion. Archimedes developed the idea of the screw pump, which provided
inspiration to the developers of marine propulsion in the 19th century. Leonardo da Vinci
produced sketches of a screw propeller that resembles the blades of a modern cooling
fan.!

Modemn screw propulsion appears to have been first proposed in England by
Robert Hooke in 1680 and first used by Colonel John Stevens at New York in 18042
Acting for the United States and British Royal Navies respectively, John Ericcson and
Francis Pettit Smith made practical applications of screw propulsion in the earty 1800's.
Both men received patents for screw propulsion in 1836 and soon had suc.essfully
demonstrated the advantages of the screw propeller over alternative forms of mechanical
propulsion.’

1.2 The history of digital computers.
The birth of the concept of the modern digital computer can be traced back almost

118 Cortten, Marine Propeliors and Propulsien (Onford, Sagiand: Buiterwer®-Hoisumans Lad., 1994)5.5
2pvinsipies of Navel Architochurs, John P, Cummtack (New York: SNAME. 1967), p3 0.
3 Thomes C. Gilaner end Bruce Jubmenn, Intredestion to Neval Archilesturs (Amaapolin, Marylant: Neval ltiiute Prem, 1987), p.230.

13

o

e ala

as far as the screw propeller. Charles Babbage, an English mathematician, proposed the
“analytical engine®. The analytical engine was to be a totally mechanical, steam-driven
machine capable of performing the five basic data processing functions: data input,
arithmetic processing, data storage, data output, and control of the operations. Although
Babbage's engine failed because of the lack of adequate hardware, the concept formed the
basis of the modem digital computer ¢

The development of the computer accelerated in the 1940's. The Mark |
computer, an electromechanical calculator was built at Harvard University by Dr. Howard
Aiken in 1944. The Electronic Discrete Variable Computer (EDVAC) was built at the
University of Pennsylvania between 1946 and 1952. The EDVAC was the first computer
to allow instructions to be stored in memory rather than to be hard wired. The UNTVAC
1 was introduced as the first mass produced digital computer and the first to be used in
business computer market 1950's.}

The design of marine propellers took a great step forward with the development of
the high speed digital computer. The digital computer is particularly suited to the
application of circulstion theory to propeller design. It is a simple matter to employ a
computer to perform the repetitive calculations inherent in the application of circulation
theory to hydrofoil and propeller design.

1.3 Persenal computers.

While the first generstion of digital computers made use of vacuum tube
technology and performed data processing operations in milliseconds, the second
generation employed transistor technology and performed operations in microseconds.

“htarvin R Oure sud John W. Subbe. Cumputers and Infivwmation Systums (New Yerk: MoOrue-Hill Bosk Companty, 1984), pp 18-19.
S0uwe and Suite, p.20

14

o

® ofe

»’
‘l

times to nanoseconds. Improved technology at rapidly lowering cost allowed Commodore
c and Apple in 1977 10 introduce computers designed for home and non-professional use. »
IBM followed with the IBM PC (personal computer) in 19816
The state of the art of the personal computer user interface for the years that
. imenediately followed the introduction of the IBM PC was the familiar DOS prompt, »
shown in figure 1-1.

¢ C [
Figure 1-1. DOS Prompt

‘ The DOS prompt continued its dominance of the personal computing world until ’
well after the release of Windows™ 1.01 by the Microsoft. Corporation in 1985. The
release of Windows™ 1.01 was quickly followed by the release of subsequent, more

. capsble versions. This coupled with rapidly developing hardware enabled Microsoft > o
Corporation to establish Windows™ as the dominant operating environment for personal
computers in the late 1980's and early 1990's.

. Windows offers multitasking memory management, device-independent graphics, N
and a consistent user interface. Once a user masters his or her first Windows™
application, it is a small task to master the next. Figure 12 depicts a typical Windows

. application. Windows™ users find the control-menu box, the title, menu, and tool bars, ’
the maximize and minimize buttons, and the horizontal and vertical scroll bars both
familiar and intuitively useful. Even the most ardent purist will eventually come to prefer

. the responsiveness of Windows™ to the puritan harshness of figure 1-1. »

€Lasrense Prem, PA.D., The (B0 PC and B Agplications (New Yerk: John Wiley & Soma, lnc. 1984), p329.

15

@

Mo u"\ nlk ll Hnl"l \‘v’)]

Ellc Edit Select Fonn] Options lnsen ﬂlndw Help

gure 1-1. MS-DOS Prompt

The MS-DOS prompt continued s domnance of the personal computg
untl well alter the release of Windows 1.01 by the Microsoft Corporation m 1988
release of Wmdows 1.01 was quickly followed by the release of mbsewent. m(

Figure 1-2. Typical Windows™ based application

1.4 The employment of personal computers in hy(irofoil and propeller design.

It is the intended purpose of this thesis to demonstrate the feasibility and
desirability of the employment of personal computers in hydrofoil and propeller design.
The approach will be incremental in nature. First, Windows™ applications based upon
relatively simple, traditional FORTRAN codes from the MIT Hydrofoils and Propellers
course will be designed. The intent of these initial applications is to serve as a vehicle for
developing the tools that will be required in implementing more complex codes.

The second step in this process will be to implement the MIT Propulsor Lifting
Line Code (PLL) in a Windows™ application. PLL is a tool used for the preliminary
design of marine propulsors. It can be used in the design of propulsors with a relatively
high degree of complexity. PLL can serve as the starting point of a "blank sheet of paper"
design and can be used in conjunction with codes used to design blade shapes, to analyze
cavitating propellers, and to analyze steady and unsteady propeller forces.

The third step will be to implement the MIT Propelier Blade Design Code (PBD)
as a part of the PLL Windows™ application. PBD is a vortex-lattice combined design and

16

o@e @

*

) »
analysis code. It is capable of the design and analysis of multi-stage open and ducted

) propeliers. The integrated application will provide a seamiess link between PLL and PBD. >

) »

» »

0 »

e » ©
. N

. b

2. HYDROFOIL DESIGN APPLICATIONS

2.1 The Hydrofoll Vortex Lattice Lifting Line Program.
The Hydrofoil Vortex Lattice Lifting Line Program’(VLL) is s FORTRAN code

' that demonstrates a vortex lattice numerical approximation of a straight lifting line. VLL
calculates the exact and numerical values of induced velocity, total lift, and total induced
drag for a circulation distribution defined by five Glauert coefficients®. The program also

d calculates percent error values for lift, drag, and the ratio of lift to drag squared. Output is
provided in the form of text written to the screen and a plot file which may be used with a
suitable graphics program.

’ VLL was selected for the initial step in demonstrating the feasibility and
desirability of the employment of personal computers in hydrofoil and propeller design. It
was selected for two reasons. First, the program is relatively short and could be easily

¢ converted from FORTRAN to the C programming language. Second, the implementation
of VLL in the Windows™ environment would result in immediately recognizable
improvements in the user interface, in terms of input, output, on-line help and portability.

2.1.1 A comparison of VLL and the Windows™ version of VLL.
Figure 2-1 is a sample of the screen output provided by VLL.

7 et Karwin, 13,04 Lacture Netes -Hydrefoils and Propeliers (Cumbridge, Massachusetts: Massachusstts Institnte of Techmology,
1993), p. 88
MM“‘H‘MMMMMIM »

VORTEX LATTICE LIFTING LINE.LINT SOLUTION WITH 10 ELEMINTS

03000 0493 +03129 -1.0000 0999 +0314
04755 04455 +09080 -10000 09958 +09117
04045 0355 +14142 .10000 09959 +1.4200
02938 02270 +1.7%20 -10000 09959 +1.709¢
0.1545 00783 +19754 -1.0000 0I9W +]19033
+00000 +00M2 +19754 -1.0000 099 +19835
+0.1545 +02270 +1.7520 -1.0000 0993 +1.7894
+02939 +03536 +14142 10000 -09959 +1.4200
+04045 +0.44S5 +09000 -10000 09959 +09117
+0473S +04938 +0312 -10000 09959 +03142

8

PERCENT ERXROR IN NUMERICAL SOLUTION:
COMPUTING DOWNWASH FOR GIVEN CIRCULATION
urr: -4 DRAG -8 DRAGAIFT®2 O

COMPUTING CIRCULATION FOR GIVEN DOWNWASH
urr: 0 DRAG O DRAGAIFT®*2 0

»
Figure 2-1. VLL Sample Output
Figure 2-2 is a sample of the output of the Windows™ version of VLL. It is for
the same case as the output depicted in figure 2-1 above. » ®
CURRZYT VARIASLE DATA i _
Pusber of Clemeaty: 10 “. »’
Vortex Specing: Coeine e i
Coat Pt Speciag: Cosine b .
I
Costticieat al: +1.08 i
Cosfticieat a2: +0.08 by I »
Costticieat 23: +0.0¢ P e R RO R R Y
Covflivient ad: +0.08 SPAMWISE POSITION Y/3
Cowflicient aS: ¢0.08]
Cxact: o e L =
: Apycosie ! "o »
Zrror is Predictions - s
for Fu, Fu, Fa/(fx)e=2 i e
‘ .8 0.0% | A
ettt | s
- : __somovise PosITIN Y8 | »

Figure 2-2. Windows™ VLL Sample Output

19

Figures 2-1 and 2-2 both display virtually the same information. Careful inspection
reveals that the Glauert coefficients, the number of elements used, and percent errors are
immediately available in text format. The remaining data, with the exception of the
spanwise position of the lattice vortices is presented in graphical format. The Windows™
program also creates an output file similar to figure 2-1 for each run. The section of the
output file corresponding to figure 2-1 is shown in figure 2-3.

VORTEX LIFTING LINE-LINE SOLUTION WITH 10 ELEMENTS

1000000 CO000000 0.000000 0.000000 0.000000

Cosins spaced vortices and contsol poimts

» w YC GAMMA WEXACT) WANUM) GOWUM)
1 035000 04938 +03129 -1.0000 09959 +03142
2 04753 04455 +09080 -1.0000 09959 +«09117
3 04043 03596 +].4142 -1.0000 09959 +1.4200
4 0299 02270 +1.7%20 -1.0000 09959 +1.7894
s D143 0072 +197%4 -1.0000 09959 +19838
[+00000 «00782 +19734 -1.0000 09959 +]9833
? +0.1545 +0.2270 +1.7620 -1.0000 09959 +1.789¢
s +029% +0353¢ +14142 -1.0000 09959 +1.4200
9 404045 +0.4455 +095080 -1.0000 09959 +09117
10 +04733 +04938 +03129 -1.0000 09959 +03142

+0.5000

LIFT: 04 DRAG: -03 DRAGLIFT**2 00

COMPUTING DOWNWASH FOR GIVEN DOWNWASH
LIFT: -00 DRAG: -00 DRAGAIIT**2 00

Figure 2-3. Windows™ VLL Data File
~-

It is clear by inspection of the output provided by the two programs that the
Windows™ version of VLL offers tangible improvements in the output provided. It also
offers improvements in the area of data input. The FORTRAN version of VLL provides
for user input in the traditional terminal interactive mode. Upon execution, the program
prints a series of prompts to the screen. The program accepts and screens user input, and
'mmmmmnymmm. The screen and file output are
produced immediately prior to termination of the executable.

20

.i
‘l

The values of the data input manually in the FORTRAN program are automatically ’
initialized. The user may elect to alter the default values for any or all of the Glauert
coeficients, the number of vortex elements in the lattice, or the spacing of the vortices 't

W
®
Upon execution of the Windows™ version of VLL, the main window is created. ,

control points. This is accomplished by using the Options pull down menu and invoking »
the appropriate dialog box. Figure 2-4 depicts the main window with the Geometry dialog
box active.

»

! Hydrofoll Vortex Lillng Line i

Wusber of Zlesents: 40
Vortez Spaciag: Cosiee

Coat Pt Spacieg: »
Coefticieat al:
Costlticieat ¢2:
Costticieat a3:
Cosfticient ad: » ®
Cosllicieat a5:
.’r
Figure 2-4. Windows™ VLL Geometry Dialog Box ’
After the input data has been altered, the output is calculated and displayed by
to figures 2-2 and 2-3 to be created. Unlike the FORTRAN version, the executable does g

21

to further alter the input, terminate the program, print a copy of the screen output to the

system printer, or view the on-line help available by using the Help pull down menu. ’
The on-line help provided by the FORTRAN version of VLL is limited to that

provided with the input prompts. The Windows™ version provides a general description

of the program, specifics regarding the use of each item on the pull down menus, and ’
information about the authors of the program. Figure 2-5 shows the VLL screen with the
OptionsiGeometry help message box displayed.
®
_Hydroloil Vorex Liling Line .

CURREMT VARIABLE DATA

Nusber ol Llements: 40
Vortex Speciang: Cosiwe

Cont Pt Spach ’
Contticiont mein e e oes 0y 34143 & vmar
Cosllicient Elgmants 9 vas.
Cosflicieat
coattictens | € temte dommem s i b » o
Costlicieat Ms1 g vertces.
The detoukt velue tor M ig 40.
. v
®
Figure 2-5. Windows™ VLL with Help displayed
Portability is another advantage of programming for the Windows™ environment.
[
Windows provides the interface between the executable file and the screen or printer,
obviating the need to write multiple device drivers. The programs described in this thesis
are designed to run on any IBM compatible PC with adequate memory under Windows™ .

3.1. They also may be run under Windows™ 95,

2.2 The structure of a Windows™ program.

The advantages inherent in programming in the Windows™ environment do not
come without a price. The FORTRAN version of VLL consists of about ten pages of
code in two files. The Windows™ version, on the other hand, consists of on the order of
75 pages of code in a dozen files. Some of the difference is explained by the addition of
graphical output, but the largest factor is explained by the structure of a Windows™
program.

The most basic of Windows™ programs requires at least two functions. The first
is the WinMain function and the second is the MainWndProc function. Adding the
functionality of a main menu requires an additional function, the WMCommand_Handler
function. The addition of each dialog box requires two more functions, one to initialize
the box and one to process the input from the dialog box.

In addition to the functions that are part of the Windows™ program structure, the
VLL program also uses separate functions to perform the hydrodynamic computations and
to write output to the screen and printer.

The first three sections of Appendix A provide detailed descriptions of the VLL
WinMain, MainWndProc, WMCommand_Handler functions. Appendix A.4 describes the
VLL dialog functions and the sub-sections of Appendix A.S describe the output functions
that are used in VLL. All of the function, header, resource, and definition files that make
up the VLL program are contained in Appendix A.6.

Figure 2-6 below shows the interrelationships between the functions described
below and the output hardware.

.v'

Windows'
Operating Disleg
Esvireament Bexes
—
WiaMain | [MelaWndProc WiCommandHandler
Funciien Funciiea Function
Graphical . Computational
Fo..l.‘ Funclleas

Figure 2-6. Windows™ Program Structure

2.2.1 The WinMaia function.

The WinMain function is the main entry point for an application. Typically the
WinMain function performs the following tasks:

-set up & window class structure

-register 8 window class using that structure

~create and display a window based on the registered class

-enter a message loop that receives and processes messages from Windows™,
The WinMain function for VLL is described in detail in Appendix A_1.

222 The MaiaWadProc functien.

The second function required in a Windows™ program is the MainWndProc
function. The MainWndProc function is referred to as the window procedure. It is
actually a callback function that uses a switch in processing and responding to Windows™
messages. The MainWndProc for VLL is described in detail in Appendix A.2.

223 The WMCommand_Handler function.

The WMCommand_Handler function provides the functionality of a main menu for
a Windows™ program. It consists of a switch that han lles messages sent to the
application by the Windows™ environment in response to user selections from the main
menu. The WMCommand_Handler function used by VLL is described in detail in
Appendix A.3.

2.2.4 Dialog functioas.

Dialog boxes are a convenient means for allowing the application user to provide
input to the program. The use of a single dialog box requires that two functions be added
to the functions described above. The first is a callback function, similar to the
MainWndProc. The purpose of the function is initialize the data displayed in the dialog
box when it is created, and to refer messages received by the dialog box to the second
function.

The second function is similar to the WMCommand_Handler function. The
purpose of this function is to handle messages received by the dialog box, usually
messages from an "OK" or "CANCEL" button. The user interaction with the dialog box,
other than the "OK" or “CANCEL" buttons is typically handled by the Windows™
environment. The dialog functions used in VLL are described in detail in Appendix A 4.

2.2.8 Owutput fuactions.

Application programs in the Windows™ environment provide the user with the
advantages of a graphical user interface (GUT) and the programmer with the advantages of
the graphical device interface (GDI). The GDI provides over 50 graphics routines in the
application program interface (API). These functions allow the programmer 10 generate

» v
;

output without becoming involved in the specifics of a particular piece of hardware.?

The VLL program uses four separate functions to provide output. Two provide
output to the monitor and two provide output to the system printer. Each pair consists of
a function that draws the current variable data and a function that draws the graphs and
the percent esrror table. The output functions are described in detail in Appendix A,
section 5.1 through 5.3.

2.3 The 2D Vortex/Source Lattice with Lighthill Correction Program.

The 2D Vortex/Source Lattice with Lighthill Correction Program(VLMLE) is a
FORTRAN code that demonstrates a vortex lattice numerical approximation for the two
dimensional hydrofoil problem. It is a version of the VLM2D FORTRAN program!©,
revised by Kerwin to include a Lighthill leading edge correction!!. The leading edge
cofrection prevents the infinite tip velocity predicted by linear theory for angles of attack
other than the ideal angle of attack. VLMLE takes inputs of the number of panels, ideal
lift coefficient, angle of attack relative to the ideal angle of attack, and thickness to chord
ratio. The program calculates the pressure distribution over the upper and lower surfaces
of the foil assuming 8 NACA-66(Mod) thickness form with a NACA a=0.8 mean camber
line. It writes the computed total lift coefficient to the screen and provides an output file
that can be used in conjunction with a suitable graphics program.

TheknplanalnionofVlM.Ehnwmowsth;li.uﬁonwaschosenasm
intermediate step in demonstrating the feasibility and desirability of the employment of
personal computers in hydrofoil and propeller design. It was chosen for two reasons.
First, the program seemed suitable to adaptation as a stand alone executable called by a
Windows™ spplication. Second, as with VLL, the Windows™ environment offered

SPaui Purvy, Twte C++ for Windows Programming for Beginnera(Indisnapolin, kndizza: Somms Publishing, 1993)p.35¢.
10 stin Karwin, 13.04 Locture Netas -Hydrefbide and Propeliers (Cambridgs. Massechussits: Massachussits institite of Technology,
1999), p 161,

VInL) Lighthill, *A New Agproash to Thin Asrefeil Theery”, Asre Quart 3,193-310.

26

® @

» 7
i

—TrTen

immediately recognizable improvements in terms of the user interface, input/output, on-

2.3.1 A comparison of VLMLE and the Windows™ version of VLMLE,
The screen output provided by VLMLE is limited to the computed total lift
coefficient. Figure 2-7 is a sample of the output of the Windows™ version of VLMLE.

CURRENT VARIABLE DATA

Thickness lerm:
NACA-SSRied)

Comber:
NACA ¢~8.3

Number of Pengls:
»

iee! Lik Cogt
.00 <p

Alphe-diphsfidesl
2000

ThichiCherd Relisc
01008

34433431 31 11331
N\s

Calculeted U Cosficient 8 &2 4 s s s
sy xe

¢ Upper
* Lowwer

.7

Figure 2-7. Windows™ VLMLE Sample Output
An inspection reveals that the input data, number of panels, ideal lift
coefficient, angle of attack relative to ideal angle of attack, and thickness to chord ratio
may be reviewed in the Current Variable Data area. The negative of the pressure
coefficient on the upper and lower surface is plotted versus position on the foil non-
dimensionalized with the chord on the graph, and the computed total lift coefficient is
written under the Current Variable Data area. The Windows™ version also provides the

»
graphics output file produced by the FORTRAN version.
27 »
4 e 2. M—M

The FORTRAN version of VLMLE provides for user input vis a series of prompts
to the screen. The program accepts and screens user input, and then processes the input in
a batch mode. The screen and file output are produced immediately prior to termination
of the executable.

Upon execution of the Windows™ version of VLMLE, the main window is
created. The values of the data input manually in the FORTRAN program are
automatically initialized to selected default values. The user may elect to alter the default
values for the number of panels or thickness to chord ratio by selecting Options|Geometry
on the main menu and inters ting with the Geometry dialog box. The user also may elect
to alter the ideal lift coefficient or angle of attack by selecting Options{Parameters on the
main menu and interacting with the Parameters dialog box. Figure 2-8 depicts the main
window with the Parameters dialog box active. '

Ve Laflice with | Comeciion st

ons _Lielp

CURRENT WRASLE DATA

Figure 2-8. Windows™ VLMLE Parameters Dialog Box

28

>’

After the input data has been altered, the output is calculated and displayed by
selecting the Run option from the File pull down menu. Unlike VLL, the Windows™
version of VLMLE does not perform the actual hydrodynamic calculations but rather
writes an input file containing the parameters normally provided by the user in the terminal
interactive mode. The Windows™ program then calls a modified FORTRAN version of
VLMLE. The modified FORTRAN VLMLE executable reads the input data file written
by the Windows™ program, performs the calculations, and writes the normal output file
and an additional output file formatted for use by the Windows™ program. The
FORTRAN executable also writes a dummy file immediately prior to termination. The
purpose of the dummy file is to notify the Windows™ program that the hydrodynamic
calculations are complete and that the necessary output has been generated. The
Windows™ program periodically checks for the existence of the dummy file. When it is
found to exist, the formatted output file is opened and the output is written to provide a
view similar to figure 2-7. After this is accomplished, the program remains running,
awaiting further input. The user may elect to further alter the input, terminate the
program, print a copy of the screen output to the system printer, or view the on-line help
available by using the Help pull down menu.

The on-line help provided by the FORTRAN version of VLMLE is limited, as in
VLL, to that provided with the input prompts. The Windows™ version provides a
general description of the program, specifics regarding the use of each item on the pull
down menus, and information about the authors of the program. Figure 2-9 shows the

VLL screen with the Options|Parameters help message box displayed.

29

(
20 VerexfSeurce Lotlice with Lighthill Comeciion _ ‘
& figtens Lt — O
¢ CURRENT YWRMBLE DATA o i ’
Thiciness ferex
Combder:
NACA o~0.8
. "'.."" Pen When ‘OpienaiPerametsns’ ls selectsd from the »
mela mens. he Ussr Moy 3¢iect veiues fof ides!
Mdes! Lir Cost 0 B enefiicient snd the angls of sttack reletive to
(V] e ideol engle of smack.
Aghe-diphefide
200
ThickiCherd
P 01080 ®
Calculetad LI CosfMicient &4 82 o4 5 0 0
ez xe
:U”cr
e Lower »
Figure 2-9. Windows™ VLMLE with Help displayed
® []
The Windows™ version of VLMLE will run on any IBM compatible PC with
Windows™ 3.1 or Windows™ 95, .
° b’
P ®
® »
e |

30

3. PROPELLER DESIGN APPLICATIONS

3.1 The MIT Propalsor Lifting Line Program.

The MIT Propulsor Lifting Line Program is a FORTRAN code that is used for the
preliminary design of marine propulsors. It can be used in the design of propulsors with a
relatively high degree of complexity. PLL can serve as the starting point of a "blank sheet
of paper” design and can be used in conjunction with codes used to design blade shapes,
to analyze cavitating propellers, and to analyze steady and unsteady propeller forces.

PLL was selected for the second step in demonstrating the feasibility and
desirability of the employment of personal computers in hydrofoil and propeller design for
two reasons. First, the program is the starting point for propeller designs and can be used
in conjunction with other codes that further refine the design. Second, the implementation
of PLL in the Windows™ environment was estimated to be the most difficult step in the
construction of and integrated propeller design software package.

3.1.1 A brief description of PLL.

The FORTRAN version of PLL is designed as an interactive program. The user is
prompted for input data and may provide it in the form of keyboard input or prepared data
files. The program also provides the capability of writing input files for later use based on
the keyboard input provided. The three basic files used in a typical PLL run are the
ovenall input file, the blade input file, and the wake input file. A pre-swirl stator
circulation file may be used in a project which includes a non-axisymmetric pre-swirl
stator. Figure 3-1 is a sample overall input file.

adi .

PROPELLER LIFTING LINE RUN: 1/31/1996

OVERALL INPUT FILE
30.500000. Ship speed (ft/sec)
1.991000.......... Fluid Deasity
10.000000 Shaft centerline depth (ft)
| R Number of components
N.......... No image hub to be used
N.......... No image duct to be used
N Componeat 1 is not a ringed propeller
L Number of blades on compoaent 1
10.000000. Diameter of component 1 (ft)
sample.bld File containing blade inputs for comp. 1
10.000000. Diameter of wake for component 1 (R)
samplel.wak File containing wake inputs for comp. 1

Figure 3-1. Sample PLL Overall Input File
The overall input file provides information regarding the ship operating conditions, the
number and nature of the propulsor components, and the files that describe the blade and
wake inputs. Figure 3-1 is an overall input file for a single five bladed propeller with no
ring or duct.
A blade input file is shown in figure 3-2 below.

PROPELLER LIFTING LINE RUN: SAMPLE RUN #1 00/00/94
BLADE INPUT FILE
NUMBER OF RADII FOR INPUTS:
11

NONDIMENSIONSAL RADII FOR INPUTS:

0.2000 0.2500 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 0.9500 1.0000
CHORD/DIAMETER AT EACH RADIUS:

0.1740 0.1970 0.2290 0.2750 0.3120 0.3370 0.3470 0.3340 0.2800 0.1200 0.050
THICKNESS/DIAMETER AT EACH RADIUS:

0.0348 0.0329 0.0310 0.0271 0.0233 0.0194 0.0156 0.0117 0.0079 0.0060 0.0040
2-D SECTIONAL DRAG COEFFICIENT AT EACH RADIUS: -

0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080
NONDIMENSIONAL CIRCULATION AT EACH RADIUS:

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Figure 3-2. Sample PLL Blade Input File

The blade input file provides non-dimensional information regarding the blade chord,
thickness, two dimensional sectional drag coefficient, and circulation at a number of radii
spanning the blade from hub to tip.

A sample wake input file is shown in figure 3-3 below.

32

" o

& ofe

PROPELLER LIFTING LINE RUN: SAMPLE RUN #1
) see . WAKE INPUT FILE . * »
NUMBER OF RADI FOR INPUTS:
11
NUMBER OF HARMONIC COEFFICIENTS (axial, radial, tangential):
1 00
NONDIMENSIONAL RADII FOR INPUTS:
0.2000 0.2300 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 0.9500 1.0000 »
AXIAL COSINE HARMONIC COEFFICIENTS:
0.4520 0.4530 0.4540 0.4760 0.5160 0.5870 0.6710 0.7570 0.8140 0.8350 0.8470
AXIAL SINE COEFFICIENTS:
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Figure 3-3. Sample PLL Wake Input File »

® ofe

The wake input file provides a description of the inflow wake in terms of harmonic
coefficients of the circumferentially varying inflow at a specified set of radii.!?

After initial input is made in order to provide a description of the proposed blade,
wake, and operating conditions, the user is allowed to review and alter the current PLL
settings. The current settings include switches that determine whether PLL will optimize
circulation and chord length, whether or not PLL will perform a wake alignment or
compute the drag coefficient, and what circulation distribution will be used for ducts.
Numerical values for number of panels, hub vortex radius, tip thickness, Lagrange
multiplier, maximum lift coefficient, maximum thickness to chord ratio, and minimum root
chord are also included in the current settings.

When the user is satisfied with the settings, PLL proceeds with the hydrodynamic
calculations, periodically prompting the user to make selections regarding the computation
of the effective wake, tunnel operation, thrust estimates, torque ratios, and thrust
distributions. When the hydrodynamic calculations are completed, the user may make
selections from the PLL main menu. The user may choose to unload a component, try a
different value of thrust or RPM, evaluate the effect of a non-axisymmetry stator, look at

12y/itiom B. Coney, MIT-PLL User's Manwal (Cambridgs, Massachusetts; Massachusetts Institute of Technology, 1988), p. 69.

33

output or plots, run optimization again with a different pitch distribution, try another
thrust or RPM with a new effective wake, adjust chord length to match an expanded area
ratio, perform a strength computation, reset blade input values with current blade outputs,
review or alter the current settings, reoptimize with a new propeller diameter, determine
optimum RPM or diameter, perform a blade stress computation, modify the thickness
distribution, or exit the program.

Output from the FORTRAN version of PLL includes text files that present
summary and detailed data for each of the propulsor components, duct geometry data,
velocity profiles far downstream of the propulsor, and files that describe the forces,
velocity harmonics, and circulation distribution for non-axisymmetric stators. A file that
compares axisymmetric and non-axisymmetric results is also provided. Plotted output is
also available through the use of plot files with suitable graphics programs. Piotted data
includes axial inflow velocity, advance angle, tangential inflow velocity, chord and
thickness distributions, circulation distribution, axial and tangential induced velocity,
hydrodynamic advance angle, and local thrust, torque, and lift coefficients.

PLL is a capable and complex computer program. A detailed discussion of the
program, including the theory behind the code, the input to the program, running the
program, and output from the program is available in the MIT-PLL Propulsor Lifting Line
Code User's Manual by William B. Coney.

32 The MIT Propelier Biade Design Code.

The third step in demonstrating the feasibility and desirability of the employment of
personal computers in hydrofoil and propeller design is the integration of the MIT
Propelier Blade Design Code as a part of the PLL Windows™ application. PBD is a
vortex-iattice combined design and analysis code. It is capable of the design and analysis
of multi-stage open and ducted propellers. The integrated Windows™ application
provides a seamless link between PLL and PBD.

34

.i
i

3.2.1 A brief description of PBD. i
The FORTRAN version of PBD is designed to run in a batch mode. The user is ’
required to provide three input files, four in the case of the coupled analysis mode. The
three file types required are the B-spline control polygon file, the axisymmetric flow b
solution in the region of the propeller, and a main administrative file. The coupled analysis ‘
mode also uses a circumferential mean induced velocity file, usually produced by a :

previous PBD run. Figure 3-4 is a sample main administrative file. j

Figure 3-5 is a portion of a sample velocity file.

' PBD14 TURB1 PBD :n0 hub, no duct
turbl.ben : OR TRY PBDOUT.BSN
rotor.vel : OR TRY restart.vel
41111 :nblade nkey, mkey
2 lispn
1012345678910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3536 »
) 37383940 ‘metrp -
00.000.0 rihub,hgap,iduc,dgap
9100 :nx,ngeoefl, mitype, mthick
2 :imode
0 :nwimax
10.0010.0001 :niter,tweak bulge, radwgt, nufix . - @
J 10.02 :nplot, hubshk
0.0083 :Cdrag
0.900 1.000 1500 0.100 :ADVCO XULT XFINAL DTFROP
0.0300 :Circ Coef.
02 03 04 0506070809 10 /R
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 wd » 7
0. 0. 0. 0. 0. 0. 0. 0. 0. UA i
0. 0. 0. 0. 0. 0. 0. 0. 0. ‘UAU ,
0. 0. 0. 0. 0. 0.0 00 UT
0. 0. 0. 0. 0. 0. 0. 0. O ‘UTU
Figure 3-4. Sample PBD Administrative File »
The administrative file specifies the B-spline and velocity input files. It also specifies :
fineness of the vortex lattice, the mode in which the job is to be run, the thickness and ’
circulation distributions, the maximum number of wake iterations, parameters related to L
iteration of the blade shape, the velocity field at the propeller and at the ultimate wake,

35

o e e o e fre s g e e

TITLE = "PBD10 VELOCITY INPUT*
VARIABLES = X.R,UA,UR,UT »
ZONE T="Inflow", I= 5, J= 5, P=POINT
-3.0000 0.2000 10 0.0000 0.0000 ®
-1.5000 0.2000 10 0.0000 0.0000
0.0000 0.2000 10 0.0000 0.0000
15000 0.2000 10 0.0000 0.0000
3.0000 0.2000 10 0.0000 0.0000 »
-3.0000 0.5000 10 0.0000 0.0000
-1.5000 0.5000 10 0.0000 0.0000
0.0000 0.5000 10 0.0000 0.0000
1.5000 0.5000 10 0.0000 0.0000
3.0000 0.5000 10 0.0000 0.0000
-3.0000 0.7000 10 0.0000 0.0000 »
-1.5000 0.7000 10 0.0000 0.0000
0.0000 0.7000 10 0.0000 0.0000
15000 0.7000 10 0.0000 0.0000
3.0000 0.7000 10 0.0000 0.0000
-3.0000 0.9000 10 0.0000 0.0000
) -1.5000 0.9000 10 0.0000 0.0000 »
0.0000 0.9000 10 0.0000 0.0000
1.5000 0.9000 10 0.0000 0.0000
3.0000 0.9000 10 0.0000 0.0000

Figure 3-5. Sample PBD Velocity Input File
The velocity input file contains induced velocity data for at least four stations axially
extending from upstream of the propeller to at least the axial position downstream where
all flow quantities are constant. At least four radial positions must be specified.

A portion of a sample B-spline control polygon file is shown below in Figure 3-6. 3

ZONE T="B-spline polygon®, I= 7 J= 7 F=POINT

<0.08451 0.18184 -0.08317 0.19996 0.0 0.0 0.0
<0.06695 0.18725 -0.07201 0.20062 0.0 0.0 0.0

) <0.01607 0.19667 -0.04289 0.20129 0.0 0.0 0.0 »
0.05758 0.20073 -0.00762 0.20087 0.0 0.0 0.0

0.13445 0.19920 0.02392 0.20063 0.0 0.0 0.0
0.19527 0.19608 0.03901 0.19993 0.0 0.0 0.0
0.21722 0.19502 0.04442 0.20001 0.0 0.0 0.0

-0.06826 0.43067 -0.19016 0.47078 0.0 0.0 0.0

) -0.05537 0.44320 -0.16389 0.47253 0.0 0.0 0.0 []
<0.00784 0.46552 0.09462 0.47504 0.0 0.0 0.0
0.06414 0.47301 -0.00015 0.47301 0.0 0.0 0.0

0.13809 0.46351 0.09282 0.47271 0.0 0.0 00
0.20626 0.44465 0.14939 0.46908 0.0 0.0 0.0

) Figure 3-6. Sample PBD B-spline Control Polygon File Y

36

The file consists of an I by J matrix of B-spline control polygon vertices. The first three
columns are the Cartesian coordinates of the points. The values in the fourth column are
the distance from the centerline of the hub to the vertices.

Figure 3-7 is & portion of a circumferential mean velocity file. The file contains the
circumferential mean velocities induced on the blade by the circulation distribution and by
the thickness.

TITLE ="Circumferential Mean Blade Velocity"

VARIABLES = "X","Y" *Z" "VX","VY*","VZ"
ZONE T="VELOCITIES", I= 240

<0.16627 0.19145 -0.17308 0.11971 0.01132 -0.01241
<0.15747 0.19914 -0.16430 0.15086 0.01358 -0.02039
-0.14289 0.21042 -0.14933 0.17696 0.01462 -0.03066
-0.12291 0.22360 -0.12818 0.19689 0.01699 -0.04406
-0.09819 0.23685 -0.10119 0.21032 0.02295 -0.06017
<0.06963 0.2480S -0.06911 0.21752 0.03327 -0.07725
<0.03834 0.25520 -0.03319 0.21893 0.04772 -0.09347
<0.00556 0.25722 0.00464 0.21387 0.06523 -0.10738

0.02750 0.25389 0.04214 0.20134 0.08416 -0.11828
0.05973 0.24574 0.07704 0,18228 0.1029] -0.]12651
0.08992 0.23411 0.10750 0.15785 0.12007 -0.13263
0.11675 0.22100 0.13256 0.12973 0.13351 -0.13566
Figure3-7. Sample PBD Circumferential Mean Blade Velocity File

The PBD FORTRAN executable prompts the user for name of the main
administrative file. The program then reads the data in the administrative file and in the
specified input files. Periodic status messages are printed to the monitor during the course
of the hydrodynamic calculations. Program output is in the form of files formatted for
plotting with a suitable graphics program. The files produced during a given run are a

function of the mode selected for the run. The files are described below.

PBDOUT.CBD- a graphic of the centerbody, or hub.
PBDOUT.CMF- the circumferential mean forces on the blade.
PBDOUT.CMV- the circumferential mean velocities induced on the blade.

37

PBDOUT.GSP-

PBDOUT.SOL-

PBDOUT IBG-
PBDOUT.KTQ-
PBDOUT.VCP-
PBDOUT.OBG-

PBDOUT.BSN-

PBDOUT.RDC-

PBDOUT.SGR-
modes

the bound circulation strength of each vortex segment versus radial
and chordwise position (design modes only).

the bound circulation strength of each vortex segment versus radial
and chordwise position (analysis modes only).

the input blade geometry as a Cartesian grid.

a text file containing thrust and torque coefficients.

the velocities at the blade control points.

the output blade geometry for all blades on the propeller, plus the
wake of the key blade and the image hub and duct lattices, if
applicable.

the output B-spline control polygon.

the radial circulation distribution at the trailing edge (design modes
only).

the radial circulation distribution at the trailing edge (analysis
only).

Figure 3-8 shows the screen output for a sample PBD run.

38

»”

? -

PBD Propeller Blade Design and Analysis Code i .
Version w0, 14.1.27 : @
Release Date; Feb 01 1996 4

Enter PBD Master Input File Name... turb2.pbd ®

TURB2.PBD

twb2.ben

DESIGN MODE:

Iteration 1 Max radius esvor in fitting blade to hub= 0.0001
Iteration 1 Max radius error in fitting biade to tip= 0.0001

Time in BLINPT: 0 seconds »
Time in BLADE: 0 seconds
Time in INPLOT: 0 seconds
Time in PBDTWK: 0 seconds
Time in ZEROHS: 0 seconds
Creating CMV horseshoes based on IMODE.... »

sssesssee | out of 10

ssess0ees 2 oyt of 10

sesssssee 3 out of 10

sesosssse 4 out of 10

sssenssse § o of 10 .
sss0800e0 ¢ out of 10 [] o
sess0s0808 7 gut of 10

ssossssse g out of 10

soseseess g oy of 10

o90s09000 10 out of 10

Time in HSCMV: 0 seconds .
Time in SIGNCH: 0 seconds b
Time in BSHAPE: 0 seconds '
Time in PBPLOT: 0 scconds

BPORCE - No Navier Stokes coupling
———CALCULATION OF THRUST AND TORQUE COEFFICIENTS———

(o] KT 10°KQ EA1-W) »
0.0000 0.2012 0.2881 1.000
0.008$ 0.1933 0.3134 0.826

Time in BPORCE: 0 seconds

Program completed successfully

PBD Versioa No. 14.1.27
Release Dete: Fed 01 1996

Figure3-8. Sample PBD Screen Output

39

A detailed discussion of PBD, including the theory behind the code, the input to ' ’
the program, running the program, and output from the program may be found in PBD- B
14.2: A Coupled Lifting-Surface Design/Analysis Code for Marine Propulsors by S.D. @
Black, D.E. Egnor, D.P. Keenan,). E. Kerwin, and T.E. Taylor.13

3.3 The Integrated PLL/PBD Windows™ application.
The implementation of PLL as 3 Windows™ application and the subsequent

integration of PBD into the application were performed as distinct steps. The result will 4

be presented in the final form for the purposes of this thesis. The term PLL from this

point forward when referring to the Windows™ application will imply the integrated

PLL/PBD application. »
The PLL Windows™ application is similar in appearance and operation to the

applications described in sections 2.1 and 2.3. This is expected since one of the

advantages of the Windows™ environment is that all applications are similar in ’ ®

appearance and operation. The operation of PLL is, however, much more complex than |

the first two applications. This also is expected, since the original FORTRAN versions

differed significantly in complexity of operation. »’
Figure 3-9 shows the PLL application as it appears upon starting the program.

]
135000 D. Black. Dissme & Egnor, Dovid P. Kesnan, Jwstin £ Kerwin, and Todd E. Taylor, PBD-14.2: A Coupled Lifting-Surface
Dusign/Analysia Code for Mariue Propnieers (Cansbridgs, Mamachmsstis, Massachusstis Institute of Teckmology, 1996).
»
[)

E6l Holp Window

MU Aopelier oo D00 ogiam

Blede Viewsr

Weake Vicwes

Piot Viewes

Figure 3-9. Windows™ PLL

Upon first inspection, three differences between PLL and the previous applications

are immediately noticed. The PLL application has four windows displayed in the main

window. This difference is due to the employment of the Multiple Document Interface

(MDI) in PLL.

In an MDI application, the main window is referred to as the frame

window. The windows displayed inside the frame window are referred to as child

windows or document windows. In the case of PLL, the document windows are the

Blade, Wake, Plot, and Output Viewer windows. The purposes of these windows are as

follows:

Blade Viewer-

Wake Viewer-

Plot Viewer-

to display the input blade file data, including ring data for ringed
propulsors in a graphical format.

to display the input wake data in a polar plot format.

to display plotted output from the PLL and PBD FORTRAN

executables.

4]

)
' »
)
" Output Viewer- to display text file output from the PLL and PBD FORTRAN
) executables. ’
J The second difference is the Window item on the main menu, This item is used to
determine how the document windows will be displayed in the frame window. In PLL,
) unlike most MDI applications, the four document windows are created when program ’
execution begins and remain in existence until program termination. Figure 3-9 shows the
windows in a cascaded format. Figure 3-10 shows the windows in a tiled format with the
! focus set to the Output Viewer window and figure 3-11 shows the windows in the ’
iconified state with the Window pull down menu activated and the focus set to the Wake
Viewer window.
' »
gt Siew
® ']
‘ .,.i
Blede Viewer "
‘ »
[]
Figure 3-10. Windows™ PLL with Tiled Child Windows
‘]

42

¢ e e
’ 1 Blade Viewsr
A Pt Viewsr
4 Dwipul Viewer
.]
5)

. | R ’

Figure 3-11. Windows™ PLL with Iconified Child Windows

The Window pull down menu can be used to display the child windows in cascaded or
) ¢ tiled formats. When one or more of the windows are iconified, it may be used to arrange g
the icon(s) in the frame window. The Window pull down menu can also be used to set the
focus on a specific window.
The third difference that is noticed immediately is the vertical scroll bar in the
Output Viewer window. The text files displayed in the Output Viewer window frequently
exceed the vertical range of the window. The scroll bar allows the user to view the entire
file, a portion at a time, by scrolling down the page. The user can also perform the
scrolling function by using the Page Up, Page Down, Up Arrow, and Down Arrow keys
on the keyboard.

3.3.1 The Blade and Wake Viewer Windows.
The next step the user must take if he or she wishes to perform a propulsor design

is to open a project file. This is accomplished by selecting File]|Open Project on the main

43

menu. The user specifies a project file using the Open dialog box. The program then
reads overall input, blade input, and wake input files identical to those used by the original
version of PLL. The Windows™ application is designed to read pre-existing PLL data
files so that the user need not perform data manipulation in order to run old projects with
the new software.

It is important to note here that project files are not used in the FORTRAN version
of PLL. The project file replaces the initial terminal interactive input performed by user
for the FORTRAN version, and also contains the information necessary to make settings
analogous to the current settings for the FORTRAN version.

When the file has been opened, the blade input and wake data may be viewed using
the Blade and Wake Viewer windows. Figure 3-12 shows the Blade Viewer window after

a project is opened.

MOT - Sopeler ot L o0 Program

&1 Fils E&R Help Window

BLADE #1: ring.bld RING DATA

nur o Al
i 0.0 (5 14

.00 (% 14
i (X1 X0

—
! w2 s
g o ‘\T> L o.p
o

.50 .00
g s.ee - atp ».000
3
3 one (X 1)
§ v - a~t 0,000
i S0 00 B A3 KL 0D 00 AT 05 0 08 00 6 5C 85 0 0.3 08 O.f 82 LY L

Hon-Dimansional Rodii Noa-Dimensional Angles

Figure 3-12. Windows™ PLL Blade Viewer

» 7
;

w——f Yo

The data shown is for a ringed propeller. The plots are of non-dimensionalized chord and

ﬁ thickness distributions, viscous drag coefficient, and non-dimensionalized circulation ’
distribution plotted versus non-dimensionalized radius in the case of the blade and non-

dimensionalized angle in the case of the ring. Projects with a single non-ringed propeller

q display the blade information only. Projects with two components display the blade data ’
for the first component on the left and the second component on the right.

Figure 3-13 shows the Wake Viewer window after a project is opened.

Weke Profile €or
Component #1
e »
]
. Tangential
0.227

Radius Radius

0.203 1.00::

0.25:

0.303 %
e 0.402 .

0.503 g

0.600

0-703

0.80::

0.90 "

0.95::
e »

Figure 3-13. Windows™ PLL Wake Viewer

e The Wake Viewer window displays polar plots of the axial, radial and tangential ®

inflow wake velocity components for a range of radii. The values are non-dimensionalized
with ship speed and are displayed such that port is left and starboard is right. The number

° displayed in the upper left corner of the individual plots is the value that corresponds to ®
the black circle that bounds the plot. The number displayed in the lower right corner of

45

the individual plots is the value that corresponds to the center of the black circle. A
legend is displayed in the lower left corner of the window. In the case of multiple
component propulsors, the operator may switch between the wake plots for components
one and two by double-clicking the left mouse button on the Wake Viewer window. This
action has no effect if the open project is a single component project.

3.3.2 Edit Dialog Boxes.

The next step the user will want to perform in the propulsor design process is to
review and possibly alter the current program settings. This is accomplished for the most
part through a set of dialog boxes. The dialog boxes may be called using the Edit pull
down menu on the main menu. The Project Settings dialog box is called by selecting
Edit|Project Settings from the main menu. The Multiple Component Project Settings ‘
dialog box is shown in Figure 3-14,

'_'{ MIT - Prepelics Lifting Linc Progrosm - [Bladc Vicwer] j»|®
=| File EdR Helg Wiadew L)

H 1)

[S [PR N L A P et |

Project File: SAMPLE2.PRY Run ID: rs-h Run #2 —l
bl [] W
RPM Comp #1: RPM Comp #2:
e]
Qzo: [EIN—.

[celeutate EMective Wake CIRCULATION DAMPING

1 align Weke duting Circulstion Oplimizelion O use Manual Damping Yelue

[J Tunnct Opessti Mongel

unne o OQmpln' Velue

[ox] [owen]

a9 9.F ST 03 2 9> 9T ST 0LE 09 0 0.8 0%V BZ 9.3 B0 03 53 O.F 0.8 Ve Ve
Hon-Dimsnsional Roadii Non-Dimeasional Radii

Figure 3-14. Windows™ PLL Multiple Component Project Settings Dialog Box

.*7'

The user may use this dialog box to review and alter settings normally made as
part of the terminal interactive input at the beginning of a PLL session. These settings
include a run identifier, the name of the overall input file to be used, the RPM of each

component, whether or not to compute the effective wake, the desired thrust, and the

torque ratio between the two components. The user may also use this dialog box to align

or not to align the wake during circulation optimization, to indicate that the propulsor is
operating in a tunnel, and to manually specify a damping value.

The user may also review and alter settings with the Default Settings dialog box.
The Default Settings dialog box is called by selecting Edit|Default Settings from the main

menu. The Multiple Component Default Settings dialog box is shown in Figure 3-15.

U.ou-'Di.l.-nl.iox::l .l!ad.ii.)

g MIT - Prapelier Lifting Linc Progrem - [Blade Vicwes] b £
-l File EdR Help Window L]
le.bld
s.ur Max Lift S Min Rest
i san Coollicient L——] Chwrd Comp 1 ﬁ’" L I L‘\
b.bee Min Reet I]
Max Thld-ud D.2000 Choed Cump ? D.1740
Lagrange
% .0 Tip Thickness) D.D04D NU'MP“O"‘ -1.0000
l o010 D . e u
3 v | Nummbee of Mu’mpllcvlz 0.0000 = {
Conbaction 1.0000
Dvag Coefficient
6 o-ne uulgip"e' B2 Align Wake
.00
- ""'n "’"‘"‘ 0.5000 | (2 Oplimize Circuletion
[optmize Chard Longth
3
; v.08 3 Compute Drag Cosflicients
».000 -
. o) use Detault Contraclien Retia

. 0.9 @F 02 0% 0

) ﬂ;:n-bin;uiolnl Rodii

Figure 3-15. Windows™ PLL Multiple Component Default Settings Dialog Box

The Default Settings dialog box is roughly analogous to the Current Settings Menu from

the original version of PLL. The user may review and alter the maximum lift coefficient,

47

the maximum thickness, the tip thickness the minimum root chord for each component, the

®
) Lagrange Multipliers used in solving for optimum load distributions, the number of panels,
the drag coeficient multiplier, the hub vortex radius, and the wake contraction ratio. The @
user may elect to align or not to align the wake, to optimize or not to optimize the
®
[}

circulation distribution, to optimize or not to optimize the chord length distribution, to
compute or not to compute the drag coefficients, and to use the default wake contraction
ratio or to manually specify a contraction ratio.

The Duct Settings dialog box is called for projects with a duct by selecting
Edit|Duct Settings from the main menu. The Duct Settings dialog box is shown in Figure

3-16.
. []
q MIT - Prepelies Lifting Linc Progrem - [Blade Vicwer] [rf®
o! File EdR Melpg Window [
BLADE #1: sample.bld BLADE #2: sample.bld
iti.‘Z - b e I~ » ¢
3 bt Dewct Tip Gap Facter: Cuse a=0.5 mean tine for duct
[W1 o~
»»8 Prugalies Th Duct Ring Vertex F = 4
‘] T [as] e OnciRegYosx Famen >
[sgnesc Duct Forces : ’
: "1 FCoRCULATION ESTIVATE -
- {30 vse Estimatcd Duct Ciculetion
. || e ’
i -
i -] [o=n)
Wou-Dimensional Rodii Joa-Dimeasiosal Rodii
»
'
Figure 3-16. Windows™ PLL Duct Settings Dialog Box
'] »

48

The user may review and alter settings relating to duct calculations using the Duct
¢ Settings dialog box. The user may specify the duct tip gap factor and the ratio of
propelier thrust to the sum of duct thrust and propeller thrust. The user may elect to use

an a=0.8 mean line or a sinusoidal distribution of vorticity to specify duct circulation. The

¢ user may also elect to ignore duct ring vortex forces, or to ignore duct forces. The user
may elect to manually specify a value for duct circulation.
The user may wish to review and alter the settings used for the ABS Rules
[]
¢ strength calculation. The ABS Rules Strength Settings dialog box may be called by
making the Edit| ABS Strength Settings selection on the main menu. The ABS Rules
Strength Settings dialog box is shown in Figure 3-17.
e ®
_ MIT - Prepeilier Lifting Linc Pregrem - [Blade Vicwer) I-]e
=| Fils ER Heip Wiadew &
d
"Propelicr Type—) [Prepefics Melerisl e - = » ‘
Py ez, 8| 8p.wA.fhjew =
@ Tieod Prci @ w8 -1 3
O Cantrolladic Pich O NH-Mn-Bez e o
Rake) Diameter—) | O NirAFBR2 1] 27
le; [so0e]| |Owmbinran 778 0w 1] o’
¢ © Gastiron %. 27
M7 (009]| | O usorpennes '
|
|
° [oK] [mg »
! o.':o- - - :uo -
]-.n. 94 9.0 43 8.8 0 9.8 0T 29 9y V2 0.8 2y 0.2 9.9 9.0 03 5.3 B¢ 03 8 19
" Bon-Dimansiomal Radii Nom-Dimessional Radii
Py [

Figure 3-17. Windows™ PLL ABS Rules Strength Settings Dialog Box
The ABS Rules Strength Settings dialog box may be used to select a fixed or controllable
pitch propeller, to select the propeller material properties including ultimate tensile
strength and specific weight, and to specify the rake at the hub and the tip. The user may

49

¢ e ey e gt R i st

select a user defined material by specifying an ultimate tensile strength and specific weight
¢ for a material other than the five pre-defined materials.

®

There are two dialog boxes that are used to specify settings that PLL uses to write
input files for running the PBD portion of the program. The PBD Settings dialog box is
e used to make selections for parameters included in the PBD main administrative file. The
PBD Skew/Rake Settings is used to specify the skew and rake values to be used when
creating the B-spline input file. Figure 3-18 shows the PBD Settings dialog box.

-_1_ MIT - Prapeficr Lifting Linc Progrem - Blade Vicwer] |~|e
={ Fils Edr Help Window

Y i Mode Biede Goid Sgncioy] [Gbwrduise Ciox Bist ——="] [Peipst Couoni % Votneitios
@ @ nttem @ NACA 285 wore e @ Tovs Wi
8’ QO Besine O Sroekott 0.8 nees Faa Q moress woinanice
.
i l @ Oz l

4
L

ra

Q swconn Q unie s
Q) Serasi Cragoncet ot Yot 7

pll

0 Moe Ticle [Saepie Rea B2] Omcpac Filqonme Roae 0 lacter mazp {myptade |

s] &eSl"] SSNSn BEe)

e ETTO igmemtes T BRvem =
° lf
S — i

i 4. -..

5.0 9% 9.8 013 6% 9 008 Y 0 G.9 10 9.8 07 2.2 03 B.F) 03 B 93 LS VO
Noa-Dimensional Radii Hon-Oimeasionol Radii

l

l

Figure 3-1C. Windows™ PLL PBD Settings Dialog Box
The PBD Settings dialog box may be used to select the mode in which PBD will be run,
the blade grid spacing, the type of chordwise circulation distribution, the velocities that
will be output in the PBDOUT.VCP file, the component for which the files will be written,
a run title, an output filename root, the number of spanwise vortices across the chord, the
number of trailing vortices, the maximum number of blade shape iterations, the sectional
drag coeficient, the weighting for the blade smoothing equations, the index of the

50

constrained vertices, the ultimate wake starting point, the final wake point, and the non-
dimensional time increment.
The PBD Skew/Rake settings dialog box for the first component is shown in

q MIT - Prepefier Lifting Linc Program - JBiadc Vicwer) Jrie’
=] Fils EdR Help Window [

LADE #¥2: sample.bld
|

j: VR Skew Riks WR Stew Rate ~ Y=
f o (@8] f5] 1o (58] 6]
s [@0] [5] o [
§of 00 joe] fena] oo (]
{+q s [a&] @3] oo [
1°] o (@] @] o]
act [0] [oD0] a0 |
% o (0] w0] o0 |
] wEm]Ex] o [
o [om] pw] e (]
asc [0) 600] wo
:: [Use Lineas Show
-,

) B.oa—.l)in'.u'ion:ﬂ .Rod.ii.' . c Non-Dimensional Rodii

|

1
-

i

P._‘
L

|
00

;
]
:

i

Figure 3-19. Windows™ PLL PBD Skew/Rake Settings Dialog Box

The PBD Skew/Rake settings dialog box is initialized with the current values of skew and
rake at each of the radii used for blade input data. The default value is zero. The user
may specify a value for each radii, or may specify a value for the smallest and largest radii
and select a linear skew and/or rake distribution. The distribution is calculated after the
dialog box is terminated. There are two separate PBD Skew/Rake Settings dialog boxes,
one for the first component and one for the second component.

When the user is satisfied with the PLL settings, he or she may save the project as
a project file. This is done by selecting File|Save Project from the main menu and using
the Save As dialog box. The current project file may be replaced, or the revised project

may be saved under a new or previous project file name.

- 'ms-a.‘:-v- ’L#mm:-‘»."é«s’fﬂ |apT ss..\ﬂ‘

ST ST R

ey

@®

3.3.3 Runniag PLL.

When the user has opened a project and made the desired settings using the edit
dialog boxes, the user may then run the project by making the FilejRun selection from the
main menu. The program then allows the user to make additional settings using the
Runtime dialog box. The Runtime dialog box is shown in Figure 3-20.

MIT - Prapefics Lifting Linc - I~]e

$ O Opsimize Propaiisr RPM © Mach EAR

: O Optimize Propelier Dismeter O Unload Compencaifs|
O Maximize Threst fer 3 given Tesque ®¥onc

g snd Determine Ship Speed

é < Evaluets Nan-Adisymmetic Stator

L

O Resct Blede Inpel with Carrcnt Vatues [Wit PBID filcs

FOR MAXIMIZING THRUST
[Horsepewer Threst Cecflicient
(] [

Figure 3-20. Windows™ PLL Runtime Settings Dialog Box

The user may select one of seven mutually exclusive settings from the OPTIONS area of
the Runtime Settings dialog box. The options include optimizing propelier RPM,
optimizing propeller diameter, maximizing thrust for a given torque and determining ship
speed, evaluating a non-axisymmetric stator design, matching a value for expanded area
ratio, unloading components, or none of the above options. If the user chooses to
maximize thrust for a given torque and determine ship speed, horsepower and thrust

52

coefficient must also be specified. A brief description of the runtime options is provided
below. '

Optimize propelier RPM-after performing the hydrodynamics calculations for the
"None" option, the program performs an iterative procedure to determine the optimum

®

propeller RPM. The result is reported in a message box after termination of the
FORTRAN executable. This optimization is not available for ducted or ringed propulsors.
Figure 3-21 shows the Optimization Data dialog box. The Optimization Data dialog box
is used for selecting the component to be optimized and for supplying a required thrust
value. In the case of a contra-rotating propulsor, the dialog box is also used for supplying

S P 4 e AL PR o e

a torque ratio. :
= MIY - Prepefier Litting Linc Progrem |~le t
Fils EdR Holp Windew {
Gy d v |~
§ OTHgWT e L O0] 5
OCompencatz Togme B
4 [Contsn
i Rutyting cons)
: (=]
o

Figure 3-21. Windows™ PLL Optimization Data Dialog Box

Optimize propeller diameter-after performing the hydrodynamics calculations for
the "None" option, the program performs an iterative procedure to determine the optimum
propeller diameter. The result is reported in a message box after termination of the

53

FORTRAN executable. This optimization is not available for ducted or ringed propulsors. ' ’

»
The Optimization Data dialog box is also used for this option.
Maximize thrust for a given torque and determine ship speed-after performing the @
hydrodynamics calculations for the "None" option, the program iterates to determine ship -
»
speed for a specified horsepower and thrust coefficient.
Evaluate a non-axisymmetric stator design-this option allows the user to select a
non-axisymmetric data file using the Select Stator File dialog box. The program performs
®
the normal hydrodynamic calculations for the currently open pre-swirl stator project, then
reperforms the calculations using the selected non-axisymmetric stator file. This causes
additional text output data to be displayed with the usual output files.
[
Match EAR-the match EAR option allows the user to specify an expanded area
ratio to be matched using the Expanded Area Ratio dialog box. The single component
Expanded Area Ratio dialeg box is shown in figure 3-22.
» ©
=| _ MIT - Propelics Lifting Linc Program - [Blade Viewes) [~]e
«| Fils EMR Help Wiadow $
BLADE #1: samplel.bld
. U7 J .
i >
CURREENT MATCH
i 1
i =] "
8 .:m -
»
! .00
-
I 0.0 94 6.8 53 0% 0> 9.0 0T 08 99 .0
" Boa-Dimemsiowol Rodii .

Figure 3-22. Windows™ PLL Expanded Area Ratio Dialog Box

54

_——-———ﬁ

PLL writes the expanded area ratio calculated on the most recent run of the current
project and allows the user to specify a different value. PLL then performs the normal
hydrodynamic calculations, scales the chord distribution to match the specified expanded
area ratio, and reperforms the hydrodynamic calculations.

Unload Components-if the component is hubless, ringless, and does not have a
zero gap duct, this option allows the user to specify unloading by modifying the sine series

coefficients that describe the blade circulation distribution. This is accomplished using the

Glauert Coeflicients dialog box. The single component Glauert Coefficients dialog box is
shown below in figure 3-23.

- MIT - Prepeiies Lifting Linc Pregrem - fBlade Vicwes] {~|s
=] File Edt Help Windew L]

<

San-45s cies

ee 9 .1 83 0k 93 09 LY 53 99 0
Slon-Dimensional Rodii

Figure 3-23. Windows™ PLL Glauert Coefficients Dialog Box

PLL initializes the dialog box with the sine series coefficients for the component
circulativn distribution for the most recent run of the current project. The user may

specify changes to the coefficients as a fraction of the first coefficient. After the dialog box

35

- T
' !
:

. »
is terminated PLL performs the normal hydrodynamic calculations, alters the circulation
[]
‘ distribution as specified, and reperforms the hydrodynamic calculations.
@ If there is an image hub, a ring, or a zero gap duct, the Steepness dialog box is
initialized with hub and tip control point radii and circulation values. The user may select
[
) the exponent to be used to unload the hub and tip. Figure 3-24 shows the multiple
component Steepness dialog box.
MIT - Pyepeiies Lifting Linc Pregram - [Bladc Vicwes] 0 L
e| File EdR Help Window D) []
' bld
j COMPONENT #1 COMPONENT 22
Hub Contrel Peisl - Hub Ceafral Point
Radius: 0.2392 Redies: 02382
‘ : Circulstion: 0.0116 Crcwlstion: 08138 .
i Steepness: LT__] Seupnoss: E] I;.
z Bxpenent Exponest !
rTip Contrel Pelt—————— rﬁp Cemwal Poin [
- @ ' s Radius: 2948 Radius: 0.944B _ ’
Circulabon: 0.0000 Circulation: D.DDBZ
Stkecpaess: E Steepness: D
] Exponent Exponent
3
. : =] e . '
P P PPy .0 e o
f Noa-Dimensional Radii Non-Dimeasioaal Radii
Figure 3-24. Windows™ PLL Steepness [_)}alog Box
] ‘ '
After the Steepness dialog box terminates, PLL calculates and displays, using the Unload
Coefficients dialog box, the percent unloading that may be accomplished with the specified
. steepness exponent. The user may input the size of the coefficient to control the amount {

of unloading. The multiple component Unload Coefficients dialog box is shown in figure
3-25.

56

v
2
i
3 MIT - Prepelier Lifting Linc Pregrem - [Bladc Vicwes] |~le
=| Fils EdR Helpg Wiadew [¥
. ¢ Sample.bld .
3 i |
Compongnt #1 Gomponent 82 \ ‘
Hubualesd % 180381 100.361 f
3 Hub coeflicient: L] L j ‘
' B
Tip unload % 42222 42.222
8 § Vip coefficien: l ' l | '
: [o] faca
'i -5.e18 + + + + s s + + i -o.81
]) I S S S R e i s S >
" on Dimenstonal Rodti T T " enhisansionit oaii
Figure 3-25. Windows™ PLL Unload Coefficients Dialog Box
The final two options available at run time are not mutually exclusive of each other >
or the options described above. The user may elect to have PLL write PBD B-spline input
files in preparation for running the project using the PBD portion of the PLL Windows™
application. The user may also elect to reset the blade input values with current values >
determined by the previous PLL run.
3.3.4 The Output and Plot Viewer Windows. »
The Windows™ PLL application uses the PLL FORTRAN executable to generate
the same text output files that are created by the original version of PLL. In order to
provide the user with an improved interface, PLL draws the output files to screen in the »
Output Viewer window. Figure 3-26 shows the Output Viewer window with a summary
report displayed.
|

57

r———'-_f

\!/'

prems] vis
<] Fiie EdR Help Window .
FWAZY JUTYTT 223 CONPOSINT NOIGZR 1 bl
ARIAR LOCATIOX(fu) : -..28 SJAYZTER fze: 10.062
EIBXR OF DAADES: 3 MNOR STAYXTER (fne: s.02
WIWRE OF PANSLS: 10 aka. PER WDNTSG: 3z0.0%
SLAMK FiS: ssmple.bid WALS RMIANETER ¢fx : 10.02
WARE FIMR: zaoelo. ok mes (o) : 10320.83
TIUE (f=~ibas: Me07.37 MORRDIOTIR: 4707.093
< X 1.010 WOLTMETRIC J: Z.663
BLANE WOLOTNE (2x*°9;: 3.50TL IO IEERTICA (fc**§): ge. 88
EXANDID AMA 2AT10: 0.72;
CI: -.2082 C€Q: 0.24.3 CF: -.2550 K73 0.280 &o: I.025¢
Lo I 11
ACRPRNTPAGTPR G P A CVIROTPACTP AV PR VU P A GV A G2 PR CU P £ & —
TWMATY OTYIY 123 CINDOSTNT NOGIR ¥
ARLAL LOCRYZOX(fv): .38 SIAMITRE fze: 10.02
WMBER OF BLADIS: 4 WO JTRYETER [fue: 2,02
WMRLE OF 2aNE.8: 10 &%, PE KDNTE: -3:0.0%
SLAE TOLB: zample.le WAES NIAMKTI®NR ife.: 10.02
WAVZ PIME: zempla.wzk 8" (W) : 49658.21
TI2QUE (f=-lp3': 20£359. 63 HWORAZIOTER: .78 . ¢68
< SEIF: 1.010 VOLMETEIC 3: s.663
BLADE VOLTME (Jc**s;: £.0487 MM IOERTIL (fe**5): 47.11
XXPANDID ARLL 2UTIO: 0.8:0
CI: -.245L CQ: 0.245§ Cf: I.2039 RT: 0.3199% Ro: I.0052
L2 - -
[+

Figure 3-26. Windows™ PLL Output Viewer

The Output Viewer window may be used to view all of the text reports generated by PLL.
The reports available depend on the type of project, and may include a summary report,
detailed reports for each component, the results of the blade stress and ABS Rules
strength calculation, a duct geometry file, a file describing the velocities far downstream of
the propulsor, and non-axisymmetric stator output files describing the circulation on each
blade, the forces on each blade, the velocity harmonics, and a comparison of axisymmetric
and non-axisymmetric results.

The user may page through the results in a pre-defined order by double clicking
the left mouse button while the cursor is on the Output Viewer window. A vertical scroll
bar is provided since some files are greater than one page in length. The user may also
choose the text display color from four choices (blue, green, red, and black) by double

clicking the right mouse button while the cursor is on the Qutput Viewer window.

58

P—-—-—-——'—- '

v vev

The Windows™ PLL application also uses the PLL FORTRAN executable to

generate a data file used to provide the same plots available from the original version of .
PLL. In order to provide further improvements in the user interface, PLL plots the output
parameters versus non-dimensional radius in a series of four screens in the Plot Viewer l
window. Multiple component propulsor parameters may be displayed one component at a »
time or the two components may be displayed together. Figure 3-27 shows the Plot
Viewer window with two components plotted together.
®
T o ——E—_
=1 File EdR Help Window [
. 20 11 CONIT K TN
EEE e] vy LT COWT SOVETE OX
oote (EAL TORGW CORPTE R ".".- woonE L3 00) 03 LY o1 09 :.o
EEE o LOSM. CAVIVIYION THDIR .
Page M éé -
Compoawnt #1 — o -
cﬂum" ’2 - ..'..I .1 02 ..l‘:.‘ ».s % B? 0.3 1:?;‘.0
. . »
Figure 3-27. Windows™ PLL Plot Viewer
The Plot viewer provides plots of a total of sixteen parameters. They are organized into
four screens, or pages, as indicated below. »
Page 1- Chord Distribution Input, Chord Distribution Calculated, Undisturbed
Pitch Angle, Induced Pitch Angle »

59

_—-——-—ﬁ

Page 2- Effective Axial Inflow Velocity, Induced Axial Velocity, Tangential Inflow
Velocity, Induced Tangential Velocity

Page 3- Thickness Distribution Input, Drag Coefficient, Circulation Input,
Circulation Calculated

Page 4- Local Lift Coeflicient, Local Torque Coeflicient, Local Thrust Coefficient,
Local Cavitation Number

The user may page through the four screens in the pre-defined order by double
clicking the left mouse button while the cursor is on the Plot Viewer window. The user
may also shift between the first component plot, second component plot, and combined
plot by double clicking the right mouse button while the cursor is on the Plot Viewer
window.

3.3.5 Additional Capabilities.
The Windows™ PLL application provides a few capabilities in addition to those

described above. Figure 3-28 shows the File pull down menu.

.'l

. »
' 8 - L
- EdR Help Window ®
) : - ’
¢] Pvisd PO Pirts...
9] Pvimt Output...
b 4 OpenProject..
!} Seve Project. z
*] \Write PLL Owipwt Flle...] vy LK TONT cO K X
.7 ®.3 9.3 VO -
Write POD Ouipst Flles. a0z . ? N
‘ Fua PED S = -
o.10¢ t
Exit e
[Nt
W -
e LO0C4) TORQWS CORFPPIC IANX 0.0 S0 5L 43 0.0 §) 3 ST 91 09 e
. T <
fo-ar2 -
i : »
' o 1es -
jo. 237
jo. 016
e L0EAL CAVITITION FWDIR
o8 B 0.2 N2 6.8 B3 0.8 BT 1 DD L& f: T
") |
e
Ve
Pagn #4 ii: v
A Compoamnt #] — X = - »
Component #2 -- b = >
¢80 P 0.3 2.3 0.4 0.3 Lt BT 0.0 P Lo

Figure 3-28. Windows™ PLL File Pull Down Menu
® ' In addition to the selections described previously, the user may also choose the File|Print ’
PLL Plots, File{Print Output, or FilejWrite PLL Output File selections.
The File|Print PLL Plots selection calls the Print dialog box to allow the user to
' select the plot screens to print and the number of copies. In the case of multiple » .'
component propulsors, all three available plots will be printed for each selected page. The
File|Print Output selection calls the Print dialog box to allow the user to select the text
' output pages to print and the number of copies. The File|Write PLL Output File calls the ’
Save As dialog box to allow the user to choose an output file name. After the dialog box
terminates, the program writes all of the output text files viewable in the Output Viewer

' into a single data file with the name selected by the user. ’

3.3.6 The MIT-PLL Help Program.
' The MIT-PLL Help program is a stand alone Windows™ application designed
specifically to provide extensive on-line assistance to the PLL user. The program provides

6l

help on a wide range of topics. Pull down menus are provided for the following general
areas:

PLL User's Manual-the PLL user's manual tailored to fit the PLL Windows™
application provides information on the theory and operation of the FORTRAN
executable. Figure 3-29 shows the MIT-PLL help program with the focus set to the PLL
User’s Manual|Chapter 3: Optimum Load DistributionsjMulti-Component
Propellers|Contra-Rotating Propellers selection.

. .
v|s
e PBO Usar's Manuel Moy Footimes Help
1. Intraduction L [+
& Ling Mode! o -
Optisvess Lowd Distributions
‘ [J Schemes »
Chuglene §.
Chopter §: cely ucls ngs
Chapter 7: { Pre and Pest-Swir Stmers
Chopter §: PUL Duipats d
) ' [
. >’
-
] - * »

Figure 3-29. Windows™ MIT-PLL Help Program .
PBD User's Manual-the PBD user's manual tailored to fit the PLL Windows™
5 application is also provided in an on-line format. The sub-headings provide information »
on the theory and operation of the FORTRAN executable.
Main Menu-the selections from this pull down menu provide information on the
operation of the PLL main menu selections.)

62

Features-the selections from this pull down menu provide information on the
operation of the PLL viewer windows as well as general information on running PLL.
Help-the selections from this pull down menu provide information about the

operation of the help program.
The MIT-PLL File menu allows the user t¢ print the currently displayed topic or to

el
w

exit the program. Figure 3-30 shows the MIT-PLL Help program with the Features| Wake

Viewer selection displayed.
) »
T BT T E—— O
File _ FLL Ussr's Manuel User's Mein Meau Feetwes Help
>
WANE VIENER —
e The ‘‘ake Views:' wizdox is issd to Cisplay wake dazec f-oa]

the wske f:.leis) uswc by the sus-rvatly cpen projest. Pelar
7lozs o the axiel, radiel, cad tangeatiel izflcw wwlocitiss
ere yrovided. T:e mexizua 0:1 ziazia nuwecizal valies
crax= on sac: plot izd:cete the v.crities corrwsponciang to
the 3lack circie and the center of z:s plot respestively.
The ylos asw o-ivnzed so thet uy - top, _eft is pocrt, covm
is kottcm, o=d Tizh: is sthd.

In =:v cesw of & mlti~coaxpc-ens proyussor, the isec may
t?gjh tetwsen <:9 <w> compcents by doudle cliczing om the
window,

Wake iapit deta can d¢ zod:fied using the MIT-PLL Editor-.

- :

)
Figure 3-30. Windows™ MIT-PLL Help Program with Help Displayed
. 337 The MIT-PLL Editor Program. '
The MIT-PLL Editor program is a stand alone Windows™ application that is used
to edit PLL blade, wake, overall input, and non-axisymmetric stator files. The program is
)

o started by selecting Edit|Blade/Wake from the PLL main menu. The user may opena PLL
file for editing by selecting one of the four file types from the Open pull down menu.

63

Figure 3-31 shows the MIT-PLL Editor program with the focus set to the Open|Blade
selection and an open blade file.

BLADE CHORD
a -
b N
r £
L
3
N,
N,
I'
*

o1 7 T] O teas Tormmesas
2w 3 O véid Rediws
1 i

. !

6. Reerd

w.e Revised

0.0 0.1 0.t 0.8 09 0.3 0.8 0.7 o0 0.9 1.0

Figure 3-31. MIT-PLL Editor

PLL blade input files are displayed as a series of plots of parameters versus non-
dimensional radius or angle, as appropriate. The user shifts between parameters by double
clicking the left mouse button on the "Next Parameter” box on the screen. The user may
alter parameter values by clicking the right mouse button on the graph at the desired
value. The program then draws the data point with the nearest non-dimensional radius as
a revised point at the indicated location. The user may add a new radius by double
clicking the left mouse button on the "Add Radius" box. Figure 3-32 shows a blade chord
plot with the record plot and a revised plot with reduced chord length. The Add Radius

dialog box is shown with a new radius value entered.

.i
i

—

-

MIT-PLL Editer jd O
Fis Opes Seove Edt Heip
..
e.3¢
/P"'-‘\
o j’ T h \
.20 P -
s N\
v.as 'J/ [-‘
o8¢ ‘r' a‘ T D Bene Resansess
w28 . ,lT O bl Radies
[
New Radius : Regord
Reyiued

l oK]ITMIJ 06 07 00 09 1.0

Figure 3-32. MIT-PLL Edit Process

When the user adds a new radius. it is added to the revised curve with a value interpolated
between adjacent point values. When the user is satisfied with the revised curve. he or she
may update the data by selecting File|{Update Data from the main menu. If the user wishes
to discard the current revised curve and return to the record data, he or she selects
File|Reset Data from the main menu.

The final step in the edit process is saving the revised E]f. The Save pull down
menu offers the option of saving blade, wake, overall input, or non-axisymmetric stator
files. These selections allow the user to overwrite the original file that was edited or to
save the current data under a new filename. The MIT-PLL Editor program then writes a
standard format PLL file, readable by either the Windows™ PLL application or the
original version.

The edit process for wake files is similar to that for blade files. Figure 3-33 shows
the edit process in progress for a wake file.

65

» ¥
.

-

— S T, - (¢

Fils Open Save EdR Heip

.. Tl)
ee o) o—
.
.08 R 2 —ag
.‘“ (e o B
R]
.9
s.er
owis
(N} ’
9.9

0.60 010 .20 630 0.4 0.40 OE 0.9 ¢.60 990 L0

0 Bene Yazamaves
D Vvid dadivs

s 90
[N} Y .
..z
.03
* ¥
o.48
v.28
"e?
i
..0¢
.90 .
.00 10 0.20 0.0 4.4 0.I0 0.8 0.70 $.60 ¢.f0 L.eO

Rerized
e

AXIAL VELOCITY
HARMONIC COEFFICIENT 41

Figure 3-33. MIT-PLL Wake File Edit Process

PLL wake input files are displayed as a series of plots of sine and cosine harmonic
coefficients versus non-dimensional radius for axial, radial, and tangential velocities.
Editing is performed as described above.

Non-axisymmetric stator files are displayed and edited differently than blade and ’ ,’

wake files. Figure 3-34 shows a non-axisymmetric stator file in the edit process.

66

|
=1 _ ML e L=lo I
Open_ Save EdR Melp .
¢ STATOR H TEST.SIA]t
] .
¢ f’/ K i ’
(7SERERAN
‘ ! T «4%":&‘ A 4
11T, |
smn \ \{ % c. . & 3me
\\\\\‘\ ‘/,,"’ O 44 Mlade
‘ ‘&!ﬁ XL/ - ’
e \/.— — e
Mew Anglc {Degrecs) E‘E Revired
} Lok] [camee] »

Figure 3-34. MIT-PLL Stator File Edit Process

Non-axisymmetric stator files are displayed in a polar plot format with the plot angle being
the blade angle, zero at the top and proceeding counterclockwise. The magnitude of the
point indicates the fraction of mean load for each blade. In order to change the location
and/or loading of a blade, the user clicks and drags the point to the desired angle and
loading using the right mouse button. The user may call a dialog box to add a new blade
angle by double clicking the left mouse button on the "Add Blade" box. New blades are
added at a load of 1.0. The mean values of the blade loadings for the revised and record
plots are calculated and displayed in the plot legend. The process of updating, resetting,
and writing revised stator files is the same as described above for blade files.

Overall input files are displayed and edited differently than blade, wake, and stator
files. Figure 3-25 shows the MIT-PLL editor program with an open overall input file.

67

- U
e Open Save Edk Help

PROPELLEN LEFTING LINE AUN: 2071398 [)
QUERALL EMPUT FILES QUCT.INP

SP.SIPOBD Ship spued (Ft/sec)

o000 Fluid Density

0.000880 Shakt centerline depth (Ft)

2 . e e JNURBEr gf Canpganents

v..........lun!whtohluud

.......... Insge duct to be used

l.sucu {Ouct chgrg lengtn)/{Component 81 gismeter) »

D008588 « JDrag coefFicient for the duct

BB50000 ¢« . o = « o(Duct thickness)s(Component 81 diameter)

10900080 _ . _ . .. Duct diametar (Ft)

o-500899 . . - . - . - ... Axiax hocatdon 0 guct mhg-choro (#t)

=1.250000 - .ANL3] lacation of companent 1 Ift)

S « e e v s s a« = JNumber of blades on component 1

.88 Dismeter of compaonent 1 (Ft)

sample.nlo File contsining orace Anputs For comp. 1

10000008« . o o JOlameter af wike Far companent 1 (Ft) .
sangle.wak File containing wake inputs for comp. 4

1 2008 Axnial lacatian af coamponent 2 (Ft)

.......... Number of blades on component 2
1|.llllll = e e aea« . J0idneter af campanent 2 (Ft)

sarple.bld File cant2i~ing blade inputs four cump. 2
0800008 Diameter aof wake for companent 2 (ft)
Sample _wak File containing wake inputs for comp. 2
[
Figure 3-35. MIT-PLL Input File Edit Process
i . . » @
Overall input files are displayed in text format on the screen. Changes are made by
making the Edit|Input Data selection from the main menu and using the dialog box
provided. Figure 3-36 shows the Two Component - Ducted Input dialog box.
|
»
>
[]
68 »
o] ® o ® o L J | |

—| MIT-PLL Editer j~]s

rComponenrt |

Generst :
50.5 .) . MNMumbcretw.adcs: [
::: hip Speed: [Wsec) |- ! Diameter py 000
2. ensity: [slugr™*3) lLSSlIJ

Blade File: |sampic.bid

V.
v o] [neroess: Wake Dismeter: (9

H

§-58

8. :

l.:'j B Use image Hub Wake File: —M.wnk
0.1 Axial Locatien: (N

9-90 -0

-1.2 e .

5 . Chard: [non-dim) 0.500D rComponent 2 1

125 |
sang] | cO: tmearsiomt D.0DBS Nembes of Bledes: [4]
10.08 | Thickness: (non-dim) Diameter: (fi
8 Diameter: (N Blade File:
10.8 Acxial Lecation: Wakc Dismeler: n

l oK] chgll Axial Localion: [@

Figure 3-36. MIT-PLL Two Component - Ducted Input Dialog Box

Revised overall input file data is saved by using the Save|Input selection from the main

menu and using the Save As dialog box to replace the original file or to create a new file.
The MIT-PLL Editor program Help pull down menu includes information on the

program, presented in the form of message boxes. The File|Print selection may be used to

make a hard copy of the current file.

3.3.8 Running PBD.

The user may elect to run the PBD portion of the Windows™ PLL application in
two different ways. The first way is to cause the necessary B-spline file to be written by
running the current project with the Write PBD files option selected in the PLL Runtime
dialog box, and then selecting FilefRun PBD from the main menu. This will allow the user

to select the CURRPBD.PBD file, which is written by PLL with the settings in the PBD

69

o

Settings dialog box, using the Select PBD Admin File dialog box. The program then calls
the PBD FORTRAN executable.

The second way to run PBD is to select File]Run PBD from the main menu and
then use the Select PBD Admin File dialog box to run a previously prepared project by
selecting the appropriate main administrative file. The program is designed to be
compatible with files written for the original FORTRAN version of PBD. This may be
done without a PLL project being open or without first running the open project.

Running PBD has no effect on the Blade and Wake Viewer windows, but PBD
output is added to the data displayed in the Output and Plot Viewer windows. The data
displayed in the Output Viewer window changes only by the addition of a screen with the
PBDOUT.KTQ file. Figure 3-37 shows the Output Viewer window with the

PBDOUT.KTQ file displayed.
—_ -8
<] File E6R Help Windew s
Rizzt table d: toza. forc:s,cxcomi o OB :_-_
~~~~~ «~CALLULATIZN 08 “HEUST AlD TORIUX ZOXISECISNTS > w==rmo=

=2 RT ALO*RQ 5’ .1-9;

0.2000 0.43.2 s.6al4 0.9533

:;“0 0.4427 z.7636¢ 0.6$%7

0.2063 0. 4420 <.7821 0.6£9

0.2070 0.%4.3 c.182¢ 0.6£2

) 0.2078 0. 140¢ «.80%L 0.$13

N 0.2080 0. 1999 <.8116 0.610

i O.Z:R 0.1392 <. 8238 0.6-3

0.2090 0. 1585 Z.83t7 o.2%0

0.2098 0. 9578 2.8eX2 0.8%7¢

) 0.2400 0.457 .8537 0.5%3
[+

Figure 3-37. MIT-PLL Output Viewer with PBD Output

70



After a PBD run, the Plot Viewer window displays a number of additional pages.
The first is a diagram of the input blade B-spline control net and the resultant blade in the
form of a wireframe diagram. The second additional page is a wireframe diagram of the
output blade grid for each blade on the propulsor, the centerbody, the transition wake, and
hub and duct images as applicable. The third page is a plot of the velocities at the blade
control points. The next is a contour plot of the bound circulation strength. The fifth
additional plot is a plot of the radial circulation distribution. The final additional page is a
Circumferential Mean Velocity Plot. Figures 3-38 through 3-43 show each of the

additional pages.
p—| - L'..
=[Fils _EdR Heip Window Y
INPUT 8LADE GRID AND B-SPLINE NET
'_A st
HE
=
C,
<~

Figure 3-38. MIT-PLL Plot Viewer with PBD Input Blade

2



The e RN 20 h e el

-IH» Edt Help Wiadew

OUTPUT BLADE GRID AND CENTERBODY

g

A DL
/ N
<
\
c.\ A N \
’ b \ \‘\\\ \\
I3
¥ AN
ll ’1 Y
i ; Y
-
j L ¥ Y

Figure 3-39. MIT-PLL Plot Viewer with PBD Output Blade and Centerbody

hwv s
=[File _EdR Help Window Y

VELOCITY AT CONTROL POINTS

T

Figure 3-40. MIT-PLL Plot Viewer with PBD Control Point Velocity Plot

72




«[ Fife E@R Heip Window
e BOUND CIRCULATION STRENGTH
@ Discretws Vortex Sheet
e
e
= mam .
Chord 0.0 3.1 0.0 8.2
Radius
]
Figure 3-41. MIT-PLL Plot Viewer with PBD Bound Circulation Contour Plot
e vls
o . = File_EdR_Help Wiadow v

RADIAL DISTRIBUTION OF INPUT CIRCULATION
. .03

o 027 AN

0004 o / "-.‘

[N y '\

g - P

0018 / \\

e.012
. ¢.007

¢.408

0.40%

.-m0.0 0.1 4.2 0.4 4.2 0.7 4.9 0.9 L1 1R LA r/R
e
° Figure 3-42. MIT-PLL Plot Viewer with PBD Radial Circulation Distribution Plot

73




- et s B

m

CIRCUMFERENTIAL MEAN BLADE VELOCITY

ole

\'-"“O

* 2
-\\. "‘ulll,
NK S st r Ly,

L I I 2 ",’
* -
\_‘\.\ L |
S -z
A L) ¢ "IE
W .2

......... [

"I N
o
¢
“ey,

Figure 3-43. MIT-PLL Plot Viewer with Circumferential Mean Velocity Plot

The user may elect to view the PBD output in the Plot Viewer from a different
orientation and/or in a different scale. This is accomplished by double clicking the right
mouse button on the Plot Viewer window when a PBD plot is being displayed. Figure 3-
44 shows the PBD Plot Geometry dialog box.

74




r—————-————————r * v

MIT - Propelicr Lilling Line Program - [Fist Viewcr) [~{e
; -', Fils ER_Help Window 0 »

OUTPUT BLADE ORID AMD CEWTIERBODY

® ofe

l" .", \\\\ \\\\
ll ’l'l’ ‘(/ / ; ~ ‘\\ k'
L] Il"’ Y y, /
H 2
. o - ;
f_ y A \s\\\\ \ : / Aol:
\\ R\ '\ 4
AN\ You
‘ - ,
[ ox |  [camceL|
® ‘ Figure 3-44. MIT-PLL PBD Plot Geometry Dialog Box ’
Figure 3-45 shows the result of altering the orientation and scale for the plot shown
' behind the dialog box in Figure 3-44 above. ’
‘ !
‘ [

75




. [
:_m.uL
' =l Fils EdR Help Wiadow 0
. OUTPUT BLADE GRID AND CENTERBODY ®
[}
®
[]
®
! AnY
E
®
(]
Figure 3-45. MIT-PLL PBD Plot with Altered Orientation and Scale
® »
[ ]
‘
»
.
»
.
®
‘

76




-

~s

——

4. CONCLUSIONS AND FURTHER WORK

4.1  Conclusions.

The stated purpose of this thesis was to demonstrate the feasibility and desirability
of the employment of personal computers in hydrofoil and propeller design. The approach
was incremental in nature, focusing first on relatively simple FORTRAN codes from the
MIT Hydrofoils and Propellers course. The process proceeded through the design and
implementation of an integrated application that provides a seamless link between PLL
and PBD.

The resulting applications are considered to have achieved the goal of
demonstrating the feasibility and desirability of the employment of personal computers in
hydrofoil and propeller design. The applications provide enhancements in the user
interface, in terms of input, output, on-line help and portability as well as a reduction in

the total time required in the design process.

4.2  Further Work.

Further work in this area can be grouped in three distinct areas. The first area is
expansion of the PLL Windows™ application to provide the user with a more complete
range of propeller design tools. The application could be expanded to provide seamless
links to codes that analyze cavitating propellers, that perform:t.eady and unsteady
analyses, and that produce the inputs necessary for the computer aided manufacturing and
inspection processes.

The second area for further work involves improvements to the existing code
without alteration to the appearance or operation of the program. The program as it
exists is the product of an evolutionary development. Initial versions of the program did
not include all of the capabilities of the final version. As a result, there are inconsistencies
in the appearance of the code depending on the point in the process at which it was

77

P 'u-».nnawﬁ_vm-r '.uw,-.m-u q&-‘.- -

.‘i




writtei. Given unlimited time, it would be a straightforward task to revise the code in
order to take advantage of the learning curve and make the code more uniform in its
design and faster in its execution. This would result in improvements that are only
cosmetic in nature and, as previously stated, would do little in terms of improving the
usefulness of the program.

The third and final area for further work includes improvements to the PLL
Windows™ application produced as a part of this thesis. Some of the possible
improvements are listed below.

-Incorporate graphical output specific to duct geometry and ring geometry into the
plots available in the Plot Viewer window.

-Incorporate grarhical output for non-axisymmetric stator blade forces, wake
velocities, and circulation distribution into the plots available in the Plot Viewer window.

-Add the capability to display pre-existing PBD output files in the Plot Viewer
window or a separate window that may be created and closed by the user during program
execution. .

-Incorporate the MIT-PLL editor program into a window in the PLL program to
allow the user to make blade, wake, stator, and overall input file changes more rapidly
during the design process.

-Incorporate a "tool bar" or "tool pallete” comprised of speed buttons to allow the
user to quickly make common selections by clicking on a button displayed on the screen
instead of using the main menu.

-Redesign the MIT-PLL Help program as a standard Windows™ Help program.

-Incorporate a capability for the user to input circulation distributions directly as
Glauert coefficients.

-Redesign the dialog boxes in order to provide a more intuitive user interface.

-Implement the application for the UNIX operating system.

78




The implementation of any of these recommendations would provide tangible

—
-
s itk

improvements to the software system presented in this thesis.

-
Mt asi

-
:.zx'n".?'\h;v\; ST AT N eTa
S ] -

i
%
3
f‘:;
i
£
¥
L
¢ Q
#
H
i’é B
3
44
e




BIBLIOGRAPHY

Black, Scott D., Dianne E. Egnor, David P. Keenan, Justin E. Kerwin, and Todd E.
Tavior. F .o .
Propulsors. Cambridge, Massachusetts; Massachusetts Institute of Technology,
1996.

Carlton, J.S. Marine Propellers and Propulsion. Oxford, England: Butterworth-Heinemann
Ltd., 1994,

Comstock, John P. Principles of Naval Architecture. New York: SNAME, 1967.

Coney, William B. MIT-PLL User's Manual. Cambridge, Massachusetts; Massachusetts
Institute of Technology, 1988.

Gilmer, Thomas C., and Bruce Johnson. Introduction to Naval Architecture. Annapolis,
Maryland: Naval Institute Press, 1982.

Glauert, H. Elements of Aerofoil and Airscrew Theory Cambridge University Press,
1926.

Gore, Marvin R., and John W. Stubbe. Computers and Information Systems New York:
McGraw-Hill Book Company, 1984.

Kerwin, Justin E. 13.04 Lecture Notes -Hydrofails and Propellers. Cambridge,
Massachusetts: Massachusetts Institute of Technology, 1995.

80

b’




Lighthill, M.J. "A New Approach to Thin Aerofoil Theory*, Aero Quart 3,193-210.

Perry, Paul. Turho C++ for Windows Programming for Beginners. Indianapolis, Indiana:
Sams Publishing, 1993.

Petzold, Charles. Programming Windows™. Redmond, Washington: Microsoft Press,

1988.

[ »
Press, Laurence, Ph.D. The IBM PC and Its Applications. New York: John Wiley & Sons,

Inc, 1984,
‘ ®
(] [
. »’

i

] [
] [ ]
] ]

81




APPENDIX A

Hydrofoil Vortex Lattice Lifting Line Program Code.

82




APPENDIX A.1

The VLL WinMain function.

83




.»7’
i

A.1  The VLL WinMain function.
The WinMain function is the main entry point for an application. The WinMain

function for VLL is shown below. For the purposes of this thesis, code will be depicted in
a smaller font to distinguish it from main body text. Note that all text that falls between an

occurrence of "/*" and the next occurrence of "*/" is interpreted by the compiler as a
comment. Also note that the text following an occurrence of “//* on a given line is also

interpreted by the compiler as a comment.

L2 * * . LA 2 2

/ *
* the WinMain function creates the main window *
* s % TIIYY} & YTl e .n..‘/
int PASCAL WinMain(HINSTANCE hinstance, HINSTANCE hPrevinstance,
LPSTR IpCmdParam, int n"CmdShow)
{
,A * hd  rery - hd hd - -
* variable declarations *
*ERkpeee sEREERES . e/
char  ProgName] ] = "Hydrofoil Vortex Lifting Line"; //program name
HWND hWnd; //handle to the main window
MSG msg; //a Windows message structure
//define and register the window class, if an instance of this application
// is not already running
if{'hPrevInstance){

WNDCLASS wndclass;

wndclass.lpszClassName = ProgName;
wndclass. lpfaWndProc = (WNDPROC) MainWndProc;
wndclass.cbClisExtra = 0;
wndclass.coWndExtra = 0;
wndclass. hinstance = hinstance;
wndclass.hicon = LoadIcon(hinstance,"NEWICON™);
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);,
wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
wndclass. lpszMenuName = “Main_Menu";
wndclass.style = CS_VREDRAVW | CS_HREDRAW,;
if(IRegisterClass(&wndclass))exit(0);;
}
ghinstance = hinstance;

84

o ® L 9 ® o



/create and display window of the wndclass

hWnd = CreateWindow(ProgName, "Hydrofoil Vortex Lifting Line",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
NULL, NULL, hinstance, NULL);

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

/Iwhile the window exists, receive and process Windows messages

while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);
}
return msg. wParam;

When viewed for the first time, and particularly without the benefit of experience
with the C programming language, the logic and operation of a WinMain function is not
intuitively obvious. For that reason an extensive explanation of this particular WinMain
function is provided here.

The function prototype for the WinMain function, shown here, indicates that the
function returns an integer value and that the PASCAL calling convention is used.

int PASCAL WinMain(HINSTANCE hinstance, HINSTANCE hPrevinstance,
LPSTR lpCmdParam, int nCmdShow)

The integer returned is msg.wParam, which consists of information regarding the message
processed by the WinMain function. The value returned, however, is not currently used
by Windows™. The PASCAL calling convention is employed because of its efficiency in
passing variables between functions.

The WinMain function receives four parameters from Windows™. The first is the

HINSTANCE hinstance. This is a 16 bit handle to this instance of VLL. The

hPrevInstance parameter is a handle to the most recent instance of VLL that is still

85




running. It will be NULL or 0 if there are no other instances running. The third
parameter is a LPSTR, which is a 32 bit pointer to a character string. A pointer is a
variable used to store a memory address. The nCmdShow parameter is an integer value
that indicates how the program will be initially displayed.

The first three lines of code in the WinMain function are declarations of automatic
variables. An automatic variable is declared inside a function and is therefore private to
that function. The variable only exists for the duration of the function call, and memory
allocated for the variable is freed when the function returns.

char  ProgName| ] = "Hydrofoil Vortex Lifting Line"; //program name

HWND hWnd; /Mandle to the main window
MSG msg; //a windows message structure

The variables declared in this WinMain function are of three types. The first is an array of
character (char) type data known as a string. The name of the variable is ProgName. As
ProgName is declared it is also initialized with the value, Hydrofoil Vortex Lifting Line\0.
The "\0" is NULL string terminator. The compiler automatically determines the size of
the array necessary to store the characters, including the string terminator.

The second variable declared is of the HWND type. A HWND is a 16 bit handle
to a window. The handle is used by Windows™ to identify the window created by this
particular WinMain function.

The third variable is a Windows™ message structure. The concept of object-
oriented programming is that "objects” exist in the form of data structures and are
operated on by various functions'4. A message structure includes six separate pieces of
information. The details of the message structure can best be seen by analyzing the

declaration of the structure, shown here.

14Charies Petzoid, Programming Windows™ (Redmond, Washington: Microsoft Press, 1988)p.17.

86




) ¥

W

hwad,
WPARAM  wham
DWORD. tmer
sG; "

The typedef keyword assigns MSG as the name of the structure defined in the
statement. The window handle, hwnd, is the handle of the window that receives the
message. The unsigned integer, message, is message number. The WPARAM , wParam,
is a 16 bit signed parameter passed with the message. The LPARAM, Param is a 32 bit
signed parameter passed with the message. The DWORD, time is a 32 bit unsigned
integer which specifies the time when the message was posted. The POINT, pt, is a point
data structure that contains the integer position in screen coordinates of the cursor at the
time the message was posted.

The next step in initializing the program is to register a window class. If there is
no previous instance of VLL running, then a window class is defined and registered. The
window class is defined by filling in a WNDCLASS structure. The details of the window
class structure are shown below.

typedef struct tagWNDCLASS { /* wc */
UINT

style;
WNDPROC IpfaWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hinstance;
HICON hicon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCSTR IpszMenuName;
LPCSTR IpszClassNamc;
} WNDCLASS;

The style is an unsigned integer that tells the Windows™ environment how to

handle windows of this class. The IpfaWndProc parameter is a 32 bit pointer to the

87




%
."-_‘

address of a function that will handle messages passed to the program. The cbClsExtra
and cbWndExtra integers are amounts of extra bytes allocated for use by the programmer.

The hinstance handle informs Windows™ which instance of the program owns the
window class. The handles, hIcon, hCursor, and hbrBackground specify the specify the
program icon, cursor, and client area background color of the windows created using this
class.

The IpszMenuName is a 32 bit pointer to a character string that indicates the name
of the main menu to be used by the program. The IpszClassName is a pointer to a string
that specifies the name of the class.

The code below checks to see if there is a previous instance of VLL running using
the if(!hPrevInstance) statement. If there is no previous instance, then the steps within the
braces are executed. First, a WNDCLASS structure variable, wndclass is declared and
initialized. It should be noted that a variable naming convention called Hungarian notation
is used for the data contained in structures. This convention consists of using a relatively
short prefix, the variable name, and a longer descriptive suffix to indicate the specific

parameter of the structure,

if{{hPrevInstance){

WNDCLASS wndclass;

wndclass.lpszClassName = ame;

wndclass.ipfaWndProc = (WNDPROC) MainWndProc;
wndclass.cbCIsExtra = 0;

wndclass.coWndExtra = 0;

wndclass. hInstance = hinstance;

wndclass.hicon = LoadIcon(hInstance,"NEWICON");
wndclass. hCursor = LoadCursorONULL, IDC_ARROW);
widclass. hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
wadclass. IpszMenuName = “Main_Menu";

wiiclass style = CS_VREDRAW | CS_HREDRAW,
if{!RegisterClass(&wndclass))exit(0);;

}

The parameters of the window class are initialized with the values that follow:



lpszClassName address of the character array, Progname
‘ IpfaWadProc address of the function MainWndProc
cbClisExtra 0 extra bytes
cbWndExtra 0 extra bytes
‘ hinstance a handle to this instance of VLL
hicon the handle of the icon loaded by the LoadIcon statement
hCursor the handle of the cursor loaded by the LoadCursor statement
‘ hbrBackground the handle to the brush currently set in the Windows™ Control
Panel progfam
IpszMenuName the name of the top level menu to be used
' style CS_VREDRAW | CS_HREDRAW are two window class styles,

combined by the C logical "or" operator, that control the way
WindowsTM redraws the application window

After the window class structure is filled in the program registers the class using
the RegisterClass function. The RegisterClass function receives a pointer to a
WNDCLASS structure and returns an atom that uniquely identifies the class. An atom is
a 16 bit integer handle that identifies a character string. If the RegisterClass function fails,
the program is terminated by the exit statement.

The ghlnstance = hinstance; statement saves a oopy-;.t.'the handle to this instance
of VLL in the global HINSTANCE variable, ghlnstance. The global variable will be used
later in the program to create temporary windows called dialog boxes.

The following code is used to create and display the window:

hWnd = CreateWindow(ProgName, "Hydrofoil Vortex Lifting Line”,

WS_OVERLAPPEDWINDOW,
‘ CW_USEDEFAULT, CW_USEDEFAULT,

CW_USEDEFAULT, CW_USEDEFAULT,
NULL, NULL, hinstance, NULL),

89




@ ofe ¢

ShowWindow(hWnd, nCmdShow),
UpdateWindow(hWnd),

The CreateWindow function takes 11 parameters and returns a handle to the
window created. A description of the 11 parameters follows:

LPCSTR lpszClassName pointer to the registered class name
LPCSTR ipszWindowName  pointer to the window text

DWORD dwStyle window style

int X horizontal position of window

int y vertical position of window

int nWidth window width

int nHeight window height

HWND hwndParent handle of parent window

HMENU hmenu handle of menu or child-window identifier
HINSTANCE hinst handle of application instance

void FAR *lpvParam pointer to window-creation data

The ShowWindow function receives two parameters, the handle of the window to
be shown and the integer n"CmdShow which defines how the window should initially be
displayed. The function causes the specified window to be displayed on the screen in the
specified manner. The UpdateWindow function takes the handle to the window and sends
a WM_PAINT message to cause the window client area to be painted.

The last statements of the WinMain function are the message loop. The message
loop receives messages from Windows™, translates them, and sends them to the window

procedure for processing.




@ oge

while (GetMessage(&msg, NULL, 0, 0)) ;
¢ {
) mw&.ng)
, DispatchMessage(&msg); A
return msg. wParam, H
) The GetMessage function receives messages from the application message queue

and fills in the MSG structure. The function returns "0" upon receipt of a WM_QUIT
message. The loop is then terminated and the program ends.

AT "o a

e < i

< Virtual key messages are translated by the TranslateMessage function. The
DispatchMessage function sends messages to the window indicated by the msg.hwnd
window handle.
e It is important to note here that the GetMessage, TranslateMessage, and i

DispatchMessage functions do not receive the message structure itself, but the address of
the message structure, &msg. The ampersand is the address operator. When followed by
® o a variable name, it indicates the address of the variable. In the C programming language, '
functions may not operate on the arguments that are passed to them. Since the purposes
of these functions include operating on the data contained in the message structure, the ,
o address of the structure must be passed. |

91




APPENDIX A.2

The VLL MainWndProc function.




A2 The VLL MainWndProc function.

The MainWndProc function is referred to as the window procedure. It is actually
a callback function that uses a switch in processing and responding to Windows™
messages. The MainWndProc for VLL is shown below.

¥
* the MainWndProc function handles input and window management messages hd

LRESULT CALLBACK _export MainWndProc(HWND hWnd, UINT message,
WPARAM wParam, LPARAM [Param)
{

switch (message)
{
case WM_COMMAND :
{
/hthis case refers menu selections to the WMCommand_Handler function
return HANDLE_WM_COMMAND(WWnd, wParam, [Param, WMCommand_Handler);
}

case WM_CREATE :
{

/Ahis case initializes two global variables upon creation of the
// main window

HDC tempDC; //handle to a temporary device
// context

//get a handle to the screen device context
tempDC = GetDC(hWnd);

//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats

width = (float)GetDeviceCaps (tempDC, HORZRES),

beight = (float)GetDeviceCaps (tempDC, VERTRES);

{/since the normal display aspect ratio is 4 to 3, ensure that the graphical
{/ output made by the program is in that aspect ratio

if((width/height)>(4.0/3.0))

width = height*(4.0/3.0);
clse

height = width*(3.0/4.0);

93




®

/irelease the handle to the device context
ReleaseDC(hWnd, tempDC),

HDC PaintDC;

PAINTSTRUCT ps;

//prepare hWnd for painting and fill the paint structure, ps
PaintDC = BeginPaint(hWnd, &ps);

//paint the data box whenever the screen is repainted
paint_data box(PaintDC );

//paint the graphs if vortex has been run and the variable data has not
{/ changed since vortex was run

if(run_flag)
paint_graphs(PaintDC);
//mark the end of painting hWnd and return 0
EndPaint(hWnd, &ps);
return 0;
}
cass WM_DESTROY : {

//this case handles requests to exit the program made by methods other than
// the main menu

//delete the temporary plot data file if it was created
if{access("plotdat.tmp®, 0) == 0)
unlink("plotdat.tmp");
PostQuitMessage(0);

94

/Mandle to a device
/! context

//paint structure




}
return DefWindowProc (AWnd, message, wParam, [Param);

The function prototype for the MainWndProc function is shown below.
LRESULT CALLBACK _export is the return type of the function. It tells the compiler
to add the code required to allow the Windows™ operating environment to call the
function. The four parameters passed to the window procedure are the same as the first
four parameters of a message structure. This is not surprising since the purpose of the
MainWndProc function is to respond to messages. The window handle is passed because
any given program can use a number of different windows. The unsigned integer specifies
the type of message being passed. The information passed in wParam and IParam varies
with the message type.

LRESULT CALLBACK _export MainWndProc(HWND hWnd, UINT message,
WPARAM wParam, LPARAM JParam)

The next code encountered in the MainWndProc function is a switch. InC, a
switch first evaluates the expression contained in the parentheses for an integral value.
The program then branches to the case corresponding to the value of the expression and
continues execution until a break statement or the end of th&switch is encountered. A
default case may also be specified. Any value of the expression not corresponding to one
of the other cases causes the default case to be executed. In the case where there is no
default and no case is matched, the cases are skipped and execution continues with the
code after the switch.

In the case of the MainWndProc function, the expression evaluated is simply the
unsigned integer indicating the message type.

switch (message)

95

)’
N




} This switch responds to four cases, WM_COMMAND, WM_CREATE, WM_PAINT,
| and WM_DESTROY. These cases are messages sent to the MainWndProc by the
B Windows™ environment.

The WM_COMMAND message is sent when the user makes a menu selection
using the mouse or an accelerator key. it can also be sent by a control in a dialog box
owned by the main window. When the WM_COMMAND message is received by the
MainWndProc function, it refers the message to the WMCommand_Handler function by
calling the HANDLE_WM_COMMAND macro. The HANDLE WM_COMMAND
macro breaks messages down into a form that can be used by the WMCommand_Handler
function. The MainWndProc function also returns the value returned by tiie
HANDLE_WM_COMMAND macro, indicating to the Windows™ environment if the
message was handled.

) c?se WM_COMMAND : »

//this case refers menu selections to the WMCommand_Handler function

\\ return HANDLE_ WM_COMMAND(Wnd, wParam, [Param, WMCommand_Handler);

One of the most attractive features of the Windows™ environment is its device
independence. In order to build device independence into the VLL application it is ®
necessary to assess the capabilities of the output devices used by the program and tailor
the output accordingly.

The WM_CREATE message is sent after a window is created but before it is »
displayed. The WM_CREATE case is used to initialize the global variables width and
height, which are used to scale the output that is drawn on the monitor. Note that global
variables are variables that are made available to all of the functions in the program by »
declaring them external to any function definition.

96




"(,

case WM_CREATE :
{

/Rthis case initializes two global variables upon creation of the
// main window

HDC tempDC; //handle to a temporary device
// context

//get a handie to the screen device context

tempDC = GetDC(hWnd);
//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats

width = (float)GetDeviceCaps (tempDC, HORZRES);

height = (float)GetDeviceCaps (tempDC, VERTRES);

//since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that aspect ratio

if{(width/height)>(4.0/3.0))

width = height*(4.0/3.0);
else

beight = width*(3.0/4.0);

//release the handle to the device context
ReleaseDC(hWnd, tempDC);
return 0;

}

The first thing done in the WM_CREATE case is to declare tempDC as a handle
to a device context. A device context is the link between a Windows™ application, a
device driver, and an output device such as a monitor. The next statement uses the
GetDC function to assign the value of the handle of the main window device context to
tempDC. Once this is done, the case uses the GetDeviceCaps function to retrieve the
width of the monitor display area in pixels (HORZRES) and the height of the monitor
display area in raster lines (VERTRES). The integer values returned are cast as floating

- w'nkum:-m b

Sre rre e v




point values because the width and height variables are declared as global floating point
variables.

Most but not all device contexts have a horizontal to vertical aspect ratio of
640/480, or 4/3. The screen and printer output functions written for VLL assume a
display area size of 640 pixels horizontally and 480 raster lines vertically and use the width
and height values to scale the output to fit the device context. This prevents the output
from being distorted in aspect ratio or scale when drawn on a device with a different
aspect ratio or a different display resolution. The values of width and height are forced to
the appropriate ratio by evaluating the aspect ratio of the device context and constraining
the value of width to 4/3 of height if the aspect ratio is greater than 4/3, and constraining
the value of height to 3/4 of width if the aspect ratio is less than 4/3.

After using the device context, the program must release it so it may be used by
other applications if necessary. This is accomplished by the ReleaseDC command. The
final step of the case returns "0", indicating to the Windows™ environment that the
message was handled by the MainWndProc function.

The WM_PAINT message is received when either the application or the
Windows™ environment requests that all or part of the client area be redrawn. This could
occur if the window were resized or if the data to be displayed changed.

case WM_PAINT : {

/fthis case handles painting the screen
HDC PaintDC; //andle to a device
// context
PAINTSTRUCT ps; //paint structure

/lprepare hWnd for painting and fill the paint structure, ps
PaintDC = BeginPaint(hWnd, &ps);

/fpaint the data box whenever the screen is repainted
paint_data box(PaintDC );

.i
i




i/paint the graphs if vortex has been run and the variable data has not
1/ changed since voriex was run

if{run_flag)
paint_graphs(PaintDC);
/fmark the ead of painting hWnd and return 0
EndPaint(hWad, &ps);

return 0;

The WM_PAINT case declares two variables. The first is a handle to a device
context, PaintDC in this case. The second is a paint structure, ps. A Windows™ paint
structure is declared as follows:

typedef struct tagPAINTSTRUCT { /*ps*/
HDC hdc;
BOOL fErasc;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[16];
} PAINTSTRUCT;

The first parameter is a handle to a device context. The second parameter is a 16 bit
boolean value indicating whether or not the background needs to be redrawn. The third
parameter is 8 Windows™ rectangle structure that specifies the upper left and lower right
corners of the rectangle to be painted. The remaining parameters of the PAINTSTRUCT
are used internally by the Windows™ environment.
A Windows™ rectangle structure is declared as follows:

typedef struct tagRECT { /*rc ¢/

int left;

int top;

int right;
int bottom;

T T L R e S I N O g TR




)} RECT,

The purpose of the left and top parameters is to specify the Cartesian coordinates of the
upper left corner of the rectangle. The right and bottom parameters specify the
coordinates of the ' er right corner.

The WM__  _.«T case uses the BeginPaint function to prepare the main window
for painting and to fill the paint structure with the data necessary for painting the window.
The BeginPaint function receives the handle of the window to be painted and the address
of the paint structure to be used and returns the handle of the device context. Once this is
complete the case calls paint_data_box, a function written specifically for the VLL
application to paint the current data selections on the screen. If the current data set has
been processed by the part of the program that performs the actual hydrodynamic
calculations, as indicated by the state of the integer variable run_flag, the case also causes
the graphs to be drawn. This is done by c»” . . ‘¢ paint_graphs function, another
function written specifically for the VLL ap; -ien.

After the painting is complete, the EndPaint function is called to mark the end of
the painting process. The case then returns "0" to indicate *hat th2 message was
processed by the MainWndProc function.

The final case in the switch is WM_DESTROY, which is shown beiow. This case
handles requests to terminate the program made by methods other than the main menu
File|Exit selection. The access function is used to determine if the temporary plot data file,
plotdat.tmp exists and deletes the file if it does exist.

The access function receives a file name and an access code. The access code "0"
causes the function to check for file existence and return "0" if the file does exist. The
unlink function deletes the specified file.

case WM_DESTROY : {

//this case handles requests to exit the program made by methods other than
// the main mesu

100

.-i
i




//deiote the temporary plot data file if it was created
i{access("plotdat.tmp”, 0) == 0)
ualink("plotdat.tmp®);

The WM_DESTROY case then posts a message to the Windows™ environment
requesting to terminate execution and returns "0", indicating that the message was handled
by the MainWndProc function.

The last statement in the MainWndProc, shown below, refers messages not

processed by one of the four cases in the switch to the default window procedure. The ‘
DefWindowProc function processes the message and returns a value which is then
returned to the Windows™ environment.

return DefWindowProc (hWnd, message, wParam, [Param); Vo

e R
e n

AR PR v
-,

SR

101




APPENDIX A3

The VLL WMCommand_Handler function.

102




A3 The VLL WMCommanad_Handler function.

The WMCommand_Handler function provides the functionality of a main menu to
a Windows™ program. The WMCommand_Handler function used by VLL is shown
below.

void WMCommand_Handler(HWND hWnd, int id, HWND hwndCtl, UINT codeNotify)
{

DLGPROC digProc; //pointer to a dialog procedure
/hhis switch handles the various main menu selections
switch (id)

{
case IDM_RUN : {

RECT temp_rect; /hemporary rectangle structure
// for specifying portion of
// screen to redraw
//if the user selects "Run”, run the vortex program
vortex(w_nm);
//set the run flag to 1 since vortex has been run
run_flag=1;

{/cause appropriate sections of the screen to be repainted
temp_rect.top = (int)(left_rect.top®*height/480.0);
)_rect.bottom = (int)(Jleft_rect.bottom*height/480.0);

temp_rectleft = (int)(left_rect. left*width/640.0);
_rect.right = (int)(left_rect.right*width/640.0);

InvalidateRect(hWnd, &temp_rect, TRUE);
_recttop = (int)(right_rect.top*height/480.0);
_rect.bottom = (int)right_rect.bottom*height/480.0);
_rectleft = (int)(right_rect leR*width/640.0);
temp_rect.right = (int)(right_rect right*width/640.0);
InvalidateRect(hWnd, &temp_rect, TRUE);

break;
}

case IDM_PRINT : {

/hthis case calls the print dialog box
PRINTDLG pd; //print dialog structure
DOCINFO di; //document information structure
int » //page counter

//if 3 print request is made using the main menu and vortex has not been run,

103

g

Ry IRRNEIEI ol

i
b
€ -
Vo
s
J




/I pring 3 warning and deary the request
if (lrun_flag)

{
MessageBeep(MB_ICONEXCLAMATION);
Wad, "Must run program prior to printing.”,
"WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL);
break;
} »

I/otherwise, process the request
//set all structure members to zero.

e ofe

memset(&pd, 0, sizcoflPRINTDLG));

di.cbSize = sizeof{fDOCINFO),
di.lpszDocName = "VLL";
di.lpszOutput = NULL;

/linitialize the necessary PRINTDLG structure members.
pd.IStructSize = sizeof{lPRINTDLG); »
pd.hwndOwner = hWnd;
pd.Flags = PD_RETURNDC[PD_HIDEPRINTTOFILE[PD_NOSELECTION;
pd.nFromPage = 1;
pd.nToPage = 1;
pd.nMinPage = 1;
pd.nMaxPage = 1, » )

if (PrintDlg(&pd) 1= 0) {
StartDoc(pd. hDC, &di);
for(=0; j<pd.nCopies; j+){ %
StartPage(pd.hDC); S
int_data_box(pd.hDC );
paint_graphs(pd.hDC);
EndPage(pd.hDC); }

EndDoc(pd.hDC),
DeleteDC(pd.hDC);

if (p:LhDevNames != NULL)
GlobalFree(pd.hDevNames);

case IDM_GEOMETRY : {
//initialize temp_elements
clements = NUMBER_ELEMENTS;

104




/Ahis case calls the goometry dialog box
digProc = (DLGPROC)WWM(FARPROC)DI;P:&

Dabmum *GEOMETRY", hWnd, digProc), :
FreeProcInstance((FARPROC)dIgProc); B
A€ the number of clements input by the user is outside the allowable, :
// print a warning, cause the screen to be repainted, and terminate the case i
»
iftemp_clements>40ijtemp_clements<2) { .
MessageBeep(MB_ICONEXCLAMATION);,
Wad, "Number of Elements must be between 2 and 40",
*WARNING!*, MB_ICONSTOP | MB_OK | MB_TASKMODAL), .
InvalidateRect(hWnd, NULL, TRUE); :
}
/Aif the number of clements input by the user is inside the allowable,
// use the value in temp_clements
NUMBER_ELEMENTS = temp_clements;
/if constant vortex spacing is used, call the tip vortex dialog box
if{fspacing_flag) { >
Again_Tip_Vortex:
digProc = (DLGPROC)MakeProcinstance((FARPROC)TIPDIgProc,
ghinstance);
DialogBox(ghlnstance, *"TIPVORTEX", hWnd, digProc);
FreeProcInstance((FARPROC)dIgProc); ,
//if the tip vortex supplied by the user is close to the zero, print a » )
// warning and reinitiate the dialog box
if{tip_vortex_inset<0.000001){
MessageBeep(MB_ICONEXCLAMATION);
MessageBox(hWad, “Tip Vortex Inset/Panel Width must be > zero®,
"WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),
goto Again_Tip_Vortex; "
} ;
}
//cause the screen to be repainted if the dialog box was not canceled
if(lrun_flag)
InvalidateRect(thWnd, NULL, TRUE), ’
break;
}
case IDM_COEFFICIENTS : { ,
/ithis case calls the cocfficients dialog box ’
float sum=0.0; /tused to sum the coefficients
int q /Noop counter
Again_Cocfficients:
digProc = (DLGPROC)MakeProcinstance((FARPROC)NextDlgProc, Y
ghinstance); :
DialogBox(ghlnstance, "COEFFICIENTS", hWnd, digProc);
FreeProcInstance((FARPROC)dIgProc);
105 ®
o ® ® ® ® ) o ©




//sum up the sbeolute values of the glavert coefficients input by the user
for(q=0.q<S.q++)
sum += fabg(coeflicicnts|q]);

/Af the sum is close to zero, print a warning and reinitiate the dialog box
ifisum<0.0000001) {
MessageBox(hWad, At least onc coefficient must be non-zero”,
*WARNING!{", MB_ICONSTOP | MB_OK | MB_TASKMODAL),
goto Again_Cocfficients; ,

//cause the screen to be repainted if the dialog box was not canceled
if{frun_flag)
InvalidateRect(hWnd, NULL, TRUE);
break;

}
case IDM_EXIT : {
//this case deletes the temporary file and terminates the program

if{access(“plotdat.tmp®, 0) == 0)
unlink("plotdat.tmp®);
PostQuitMessage(0),

}
case IDM_ABOUT : {

/ithis case calls the About dialog box
digProc = (DLGPROC)MakeProcInstance((FARPROC)ABOUTDIgProc,
ghinstance);
DialogBox(ghInstance, "ABOUT", hWnd, digProc);
FreeProclnstance((FARPROC)dIgProc);
break; )

//the next several cases respond to the help section of the main menu
case IDM_HELPGENERAL :

{ MessageBox(hWnd, "The Hydrofoil Vortex Lifting Line Program \
applies a vortex lattice method to the straight line lifting problem.\n\a\
It calculates and displays both the exact and numerical solutions for \
induced downwash velocity, total lift, and total induced drag for a \
circulation distribution described by up to § Glauert coefficients.\n\n\
It then solves the ‘analysis’ problem by calculating and displaying \
the numerical approximation for the circulation distribution based on \
the exact downwash velocity solution.”,

"HELP", MB_ICONINFORMATION | MB_OK );
break;

case IDM_HELPRUN :
{ MessageBox(hWnd, "When File[Run' is selected from the main \
menu, the program uses the Current Variable Data to calculate and display \

106

e B




numerical and exact solutions for downwash velocity and non-dimensional \
circulation.\n\n\
The lift, drag, and drag/lift squared coefficients are also calculated \
and a table of the error in the calculations is displayed.\n\n\
This selection also causes an ascii text file, ‘output.dat’, to be written \
to the directory where the program is resident.”,
*HELP*, MB_ICONINFORMATION | MB_OK );
break;

case IDM_HELPPRINT :

{ MessageBox(hWnd, “When ‘File{Print’ is selected from the main \
meny, the program invokes standard Windows Print and Print Setup Dialog \
boxes to allow the user to print the data that appears on the screen.”,

*HELP*, MB_ICONINFORMATION | MB_OK );
break;

case IDM_HELPEXIT :
{ MessageBox(hWnd, "When ‘File|Exit’ is selected from the main \
menu, the program is terminated.”,
*HELP", MB_ICONINFORMATION | MB_OK ).
break;

case IDM_HELPELEMENTS :
{ MessageBox(hWnd, "When 'Options{Geometry’ is selected from the \

main menu, the user may select a Number of Elements to use.\n\n\
The Number of Elements, M, must be between 2 and 40, inclusive. For M\
clements there will be M+1 free vortices.\n\n\
The default value for M is 40.",

*HELP*, MB_ICONINFORMATION | MB_OK );

break;

case IDM_HELPVORTEXSPACING :

{ MessageBox(hWnd, "When 'Options|Geometry' is selected from the \
main menu, the user may select cither cosine or constant lattice spacing \
for the free vortices.\n\n\ ~-
Cosine spacing uses a transformation of the spanwise coordinate, \

y = ~(s/2)*cos(y~). It is the default spacing and also in general produces \
more accurate results.\n\n\
Constant spacing results in singularities at the tips and therefore \
requires the use of a non-zero tip vortex inset. The user is automatically \
prompted for a value for the ratio of tip vortex inset to panel width if \
the constant spacing option is selected.”,
*HELP", MB_ICONINFORMATION | MB_OK );
break;

case IDM_HELPCONTROLPTSPACING :
{ MessageBox(hWnd, "When 'Options|Geometry’ is selected from the \
main menu, the user may select either cosine or midpoint spacing for the \
for the control points.\n\nMidpoint spacing interpolates between the \

107




vortices and Cosine spacing uses a transformation of the spanwise \
coordinate, y = (8/2)%cos(y~). Cosine spacing is the default spacing and \
also in general produces more accurate results.”,
*HELP*, MB_ICONINFORMATION | MB_OK ),
break;

case IDM_HELPTIPVORTEXINSET :

{ MessageBox(hWnd, "When Coastant control point spacing is selected \
in the Geometry Dialog Box, the user is automatically prompted for a value \
for the ratio of tip vortex inset to panel width.\n\n\

A positive, non-zero value is required. The default value is 0.25.%,
"HELP*, MB_ICONINFORMATION | MB_OK );
break;

case IDM_HELPCOEFFICIENTS :

{ MessageBox(hWnd, "When ‘Options|Coefficients’ is selected from \
the main menu, the user may select values for the first 5 Glauert \
coefficients to describe the spanwise circulation distribution.\n\n\

At least one of the cocficients must be non-zero. The default values are \
0.0 for all except al, for which 1.00 is the default value.”,
"HELP", MB_ICONINFORMATION | MB_OK );
break;

The function prototype for the WMCommand_Handler function is shown below.
The return type, void, indicates that no value is returned by the function. The first two
parameters passed to the WMCommand_Handler function are the handle of the main
window and an integer variable, id, that describes the particular message being handled.
The integer is used as the argument for the switch that refers the message to a number of
different cases ror processing. The information passed in the other two parameters is not
used in this program.

void WMCommand_Handler(HWND hWnd, int id, HWND hwndCtl, UINT codeNotify)
Before the switch is employed, a 32 bit pointer to a dialog procedure

(DL.GPROC), digProc, is declared. It is used in the three switch cases that call dialog
box procedures.

108




The first case in the switch is the IDM_RUN case. The purpose of the IDM_RUN
case is to csuse the current input data to be processed by the functions that perform the
hydrodynamic calculations and to cause the results to be written to the screen.

IDM_RUN is an unsigned integer value that corresponds to the FilefRun selection on the
VLL main menu. The main menu is defined in a Windows™ resource file, pll.rc. The
definitions of identifiers such as IDM_RUN are contained in a header file, pll.h. Both of
these files are listed in Appendix A.6.

case IDM_RUN : {

RECT temp_rect; //temporary rectangle structure

/I for specifying portion of
/f screen to redraw

/Aif the user selects "Run®, run the vortex program
vortex(w_nm);

//set the run flag to 1 since vortex has been run
run_flag=1;

//cause appropriate sections of the screen to be repainted
temp_rect.top = (int)(left_rect.top*height/480.0);
temp_rect.bottom = (int)(left_rect.bottom*height/480.0);
temp_rect.left = (int)(left_rect.left*width/540.0);
temp_rect.right = (int)(left_rect.right*width/640.0);
InvalidateRect(thWnd, &temp_rect, TRUE),

temp_rect.top = (int)(right_rect.top*height/480.0);

temp_rect.bottom = (int)right_rect.bottom*height/480.0);

temp_rectleft = (int)(right_rect.leR*width/640.0);

temp_rect.right = (int)(right_rect.right*width/640.0);

InvalidateRect(hWnd, &temp_rect, TRUE);

break;

}
The IDM_RUN case declares a rectangle structure for use in specifying the sections of the
screen to be repainted. It then processes the input data by calling the vortex function.
The vortex function is basically a translation of the FORTRAN VLL code into C. It is
included in Appendix A.6.
The case then sets the run flag, indicating that the current set of input data has

been processed. The rectangle structure, temp_rect, is then set to values corresponding to

109




rectangles surrounding first the screen graphical output and then the prediction error table.

The InvalideRect function receives the handle of the window to be repainted, the address
of a rectangle indicating the portion of the screen to be redrawn, and a boolean value that
indicates if the background is to be erased during repainting. This causes a WM_PAINT
message to be sent to the MainWndProc which causes the screen to be redrawn with the
data calculated during the run.

The next case handled in the switch is the IDM_PRINT case. This case uses a
Windows™ common dialog box to handle print requests made using the main menu. The
IDM_PRINT case is shown below.

case IDM_PRINT : {

/ithis case calls the print dialog box
PRINTDLG pd; /lprint dialog structure
DOCINFO di, //document information structure
int j //page counter
//if a print request is made using the main menu and vortex has not been run,
// print a warning and deny the request
if (Irun_flag)

{
MessageBeep(MB_ICONEXCLAMATION),
MessageBox(hWnd, "Must run program prior to printing.”,
*"WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),
break;
}

//otherwise, process the request
{/set all structure members to zero.

memset(&pd, 0, sizeoflPRINTDLG));

di.cbSize = sizeoffDOCINFO);
di.lpszDocName = "VLL";
di.lpszOutput = NULL;

/linitialize the necessary PRINTDLG structure members.
pd.IStructSize = sizeofilPRINTDLG),
pd.hwndOwner = hWnd,
pd.Flags = PD_RETURNDCI[PD_HIDEPRINTTOFILE[PD_NOSELECTION;
pd.nFromPage = 1;
pd.nToPage = 1;
pd.nMinPage = 1;

110

ol

e aa




pd.nMaxPage = 1,
if (PrintDig(&pd) 1= 0) {

StartDoc(pd. hDC, &di);
for(j=0; j<pd.nCopics; j++){

StartPage(pd. hDC);
int_data_box(pd.hDC );

paint_graphs(pd.hDC);

EndPage(pd.hDC);, }

EndDoc(pd.hDC),
DeleteDC(pd.ADC);

}
if (pd.hDevMode 1= NULL)
GlobalFree(pd. hDevMode);
if (pd.hDevNames != NULL)
GlobalFree(pd.hDevNames),

Three local variables are declared in the IDM_PRINT case. The first is print
dialog structure, pd. The print dialog structure is defined as follows:

typedef struct tagPD { /* pd */

DWORD
HWND
HGLOBAL
HGLOBAL
HDC
DWORD

FEEE

HINSTANCE
LPARAM

UINT
UINT
LPCSTR
LPCSTR
HGLOBAL

HGLOBAL
} PRINTDLG;

IStructSize;

hwndOwner;

hDevMode;

hDevNames;

hDC;

Flags,

nFromPage;

nToPage;

nMinPage;

nMaxPage;

nCopies;

hinstance;

ICustData;

(CALLBACK?* IpfnPrintHook)(HWND, UINT, WPARAM, LPARAM);
(CALLBACK?* IpfnSetupHook(HWND, UINT, WPARAM, LPARAM),
IpPrintTemplateName;

IpSetupTemplateName;

hPrintTempiate;

hSetupTemplate;

111

PN IR 4 85 S - I Ui % e R "

gt e e

v Y Pt v i

g e

® ofe

AP P S, 4

RGP ¢ PR A T 1

h




The print dialog structure is used to initialize the common Print dialog box. After the OK
button on the dialog box is selected, information regarding user selections is returned in
the structure.

The second local variable is a document information structure, di. The document
information structure is declared as follows:

typedef struct { /* di ¢/
int

cbSize;
LPCSTR IpszDocName;
LPCSTR IpszOutput;
} DOCINFO;

The document information structure is used to pass file name information to the StartDoc
function. The cbSize parameter is the size of the structure itself in bytes. The
lpszDocName is a pointer to a null-terminated string specifying the document name, in this
case "VLL". The IpszOutput parameter points to a null-terminated string used to specify a
file to which the output is redirected. Using the NULL value causes the output to go to
the printer. The “print to file" capability is not implemented in VLL. The third local
variable is an integer used as a counter for producing multiple copies of the output.

The next block of code in the case checks the run flag. If the flag is not set, which
indicates that the current set of input data has not been run, the user receives an audible
and printed wamning and the switch is terminated by the break statement. The warning is
implemented using two functions. The first is the MessageBeep function, which receives
an unsigned integer specifying a particular sound and then causes the sound to be played.
The MessageBox function receives the handle to the parent window, a pointer to a null-
terminated string that is printed as the waming, a pointer to a null-terminated string that is
printed as the title of the box, and an unsigned integer indicating the style of the box. The
style can consist of any number of compatible styles combined by C logical "or" operators.
In this case the function uses three styles:

112

X
i




MB_ICONSTOP a stop sign appears in the box

MB_OK the box contains one push button, labeled OK
MB_TASKMODAL the user must respond to the box before continuing work in
the parent window

Figure A-1 shows the message displayed by this code.

if (Irun_flag)

{
MessageBeep(MB_ICONEXCLAMATION);
MessageBox(hWnd, “Must run program prior o printing.*,
"WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),
break;
}

F_.. — Hydrofoll Vortex Lifing Line .

CURRENT VARIABLE DATA
Nusdber o¢ Elements: 40
Vortex Spaciag: Cosiane
Cont Pt Spacieg: Cosine

Costticieat al:
Coetlicient a2:

Costlicieat a3:
Costticiont ad: . Mgt run progrem pries 1o printing.

Costticient a5:

-~

Figure A-1. Windows™ VLL with Error Warning Displayed
After it has been determined that the current data set has been run, the print dialog and
document information structures are initialized. The memset function sets all of the items

in the print dialog structure, pd, to zero. The sizeof function receives an expression or

113

i
2
&
¢




type and returns the size in bytes. The next three statements initialize the document
information structure as described above.
memset(&pd, 0, 5sizeof{PRINTDLG));
di.cbSize = sizeofDOCINFO),
di.lpszDocName = "VLL";
di.lpszOutput = NULL;
/finitialize the necessary PRINTDLG structure members.
pd.1StructSize = sizeof{PRINTDLG);
pd.hwndOwner = hWnd;
pd.Flags = PD_RETURNDCIPD_HIDEPRINTTOFILE[PD_NOSELECTION;
pd.aFromPage = 1,
pd.nToPage = 1,
pd.nMinPage = 1,
pd.nMaxPage = 1;
The last seven statements initialize the required parameters in the print dialog structure.
The pd.Flags parameter specifies the way the common print dialog box is initialized. Any
number of compatible flags may be used. In this case, the following are used:
PD_RETURNDC causes the PrintDlg function to return a handle to an
appropriate device context in the pd. hDC field
PD_HIDEPRINTTOFILE  hides and disables the Print to File check box in the common
print dialog box
PD_NOSELECTION disables the Selection radio button
The other six statements are self-explanatory.

The program is then ready to call the PrintDIg function. The PrintDig function
receives the address of a print dialog structure and returns a nonzero value if the function
successfully configures the system printer and zero otherwise. In VLL, if the PrintDig
function is successful, the StartDoc function is used to start a print job using the printer
device context and the address of the document information structure.

if (PrintDig(&pd) 1= 0) {
StartDoc(pd.hDC,&di);
for(7=0; j<pd.nCopies; j++){

114




StartPage(pd. ADC); é
paint_data_box(pd.ADC );
paint_graphs(pd.ADC); 4y
EndPage(pd hDC); } 5 @
EndDoc(pd. hDC); §
DeleseDC{pd.ADC);
» 9
if (pd. bDevMode |= NULL) :
GlobalFree(pd hDevMode); :
if (pd hDevNames 1= NULL) g
GlobalFree(pd. hDevNames); H
break; b
) ;

The IDM_PRINT case then uses a for loop to print the number of copies returned in the

print dialog structure. In C, a for statement consists of three expressions enclosed in a set :
of parentheses, followed by a statement to be executed. The first expression, in this case ,
j=0, is executed before the first iteration. The statement, in this case four statements %b °

' enclosed in braces, is executed until the second expression becomes false. The third
expression is executed after each iteration and is usually used to increment a counter.

R T

Note that in C, j++ increments j by the integer value 1.

) The StartPage and EndPage functions receive a handle to the printer device
context and mark the start and end of each page. The VLL program uses the
print_data_box and print_graphs functions to draw the text and graphical data to the

T,

o muvgqmw 2 '\-.n-\mt.a'@, -
Dot

' printer device context. The print_data_box and print_graphs functions are described in
Appendix A.5.3 and included in Appendix A.6.
After the pages are drawn, the document is ended using the EndDoc function and
) the printer device context is deleted. The global memory objects, pd. hDevMode and *
pd.hDevNames, are then freed and the case is terminated.

115

4
VI TN T ks

| TPEI—————




The third case is the IDM_GEOMETRY case. This case calls the Geometry
dialog box function for the purpose of receiving user input regarding the panelization of
the lifting line and the spacing of the control points and the vortices.

The first thing done by the case is to initialize the value of a temporary storage
location, temp_elements, with the current value of NUMBER_ELEMENTS, the number
ofdmiruowlﬁchﬂ!eﬁﬁingﬁneisdiweﬁ;ed. The next step is to make an instance
of the Geometry dialog box procedure. This essentially places the function at a specific
location in memory, and allows the function access to the data in the application. The
procedure instance is made with the MakeProcInstance function, which receives the
address of a function and the handle to the application and returns the address of the
function. The next step is to call the DialogBox function. The DialogBox function
receives the handle of the application instance, the address of the dialog box template
name, the handle of the owner window, and the address of the dialog procedure and
creates a dialog box. The Geometry dialog box was is s>.own in Figure 2-4. Control is
not returned to the application until the dialog box is terminated. Once the dialog box is
terminated, the FreeProcInstance function is called to free the dialog box procedure.

case IDM_GEOMETRY : {
/finitialize t ; _

temp_elements = NUMBER_ELEMENTS;
//this case callg the geometry dialog box

digProc = (DLGPROC)MakeProcInstance((FARPROC)DIgProc,

ghinstance);

DialogBox(ghinstance, "GEOMETRY", hWnd, digProc);

FreeProcInstance((FARPROC)dIgProc);
The case now checks the value input by the user, now located in temp_elements, to make
sure it is within the limits imposed by the program. If the value is outside the range from
two to 40 inclusive, a warning is printed and the screen is redrawn. Note that the value
NULL is passed instead of the address of a rectangle structure in the call to

InvalidateRect. This causes the entire window to be redrawn.

116




, o

@ ofe

IR the sumber of cleracats input by the user is outside the allowable,
I/yhawﬁumtbmbummmmeax »

if{tcmp_clements>40fitemp_clements<2) {
MessageBeep(MB_ICONEXCLAMATION);
Wad, "Number of Elements must be between 2 and 40%,
*WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL), .
Mmmmwu. NULL, TRUE), ]

If the number of elements input by the user with the dialog box is within the allowable
range, then the case uses the value.

//if the number of clements input by the user is inside the allowable,
11 use the value in temp_clements
NUMBER_ELEMENTS = temp_clements;

The case then checks the type of vortex spacing specified by the user. If constant spacing

is employed, the Tip Vortex dialog box procedure is called. This sequence is completely

analogous with the sequence for the Geometry dialog box, with the exception of the label, [ o
Again_Tip_Vortex. This label is used to cause the Tip Vortex dialog box procedure to be

called again if the user input is not acceptable.

» 7
J/if constant vortex spacing is used, call the tip vortex dialog box i
if{spacing_flag) {
Again_Tip_Vortex:
digProc = (DLGPROC)MakeProcInstance((FARPROC)TIPDIgProc,
ghinstance);
*{TPVORTEX", hWnd, digProc); »

DialogBox(ghlnstance,
FreeProcnstance((FARPROC)dIgProc);

//if the tip vortex supplied by the user is close to the zero, print a
// waming and reinitiate the dialog box
if{tip_vortex_inset<0.000001){
 ICONEXCLAMATION); ]
MessageBox(hWnd, “Tip Vortex Inset/Panc] Width must be > zero”,
"WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),
goto Again_Tip_Vortex, ,
}

//cause the screen to be repainted if the dialog box was not canceled
if(lrun_flag)

117




InvalidsteRect(hWad, NULL, TRUE),
break;

After the dialog box procedure returns and the procedure instance is freed, the tip
vortex inset is checked. If the value is less than a very small positive number, a waming
message is printed and the Tip Vortex dialog box procedure is called again. The screen is
then repainted if the run flag was cleared in the Geometry dialog procedure. This
effectively causes the screen, with the exception of the current variable data, to be cleared
indicating that the current data has not been run.

The next case is the IDM_COEFFICIENTS case. This case calls the Coefficients
dialog procedure and inspects the input in a manner similar to the previous case. The
IDM_COEFFICIENTS case declares two variables. The float variable, sum, is initialized
to 0.0. It is used to sum the absolute values of the Glauert coefficients input by the user,
in order to ensure that the at least one of the coefficients is non-zero. The integer, q, is

used as a loop counter for this purpose.

case IDM_COEFFICIENTS : {

/Kthis case calls the coefficients dialog box
float sum=00; //used to sum the coefficients
int q /Noop counter

Coeflicients:

digProc = (DLGPROC)MakeProcinstance((FARPROC)NextDlgProc,
ghinstance);

DialogBox(ghInstance, "COEFFICIENTS", hWnd, digProc);

FreeProcInstance((FARPROC)dIgProc);

{/sum up the absolute values of the glavert coeflicients input by the user

for(q=0,q<5.q++)
sum += fabs(coeficients{ql);

/Af the sum is close to zero, print 2 waming and reinitiate the dialog box
if{(sum<0.0000001) {
MessageBox(hWnd, "At least one coefficient must be non-zero”,
*WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),
goto Again_Coeflicients;
}

//cause the screen 1o be repainted if the dialog box was not canceled

118




InvalidaeRect(hWnd, NULL, TRUE),

The Coeflicients dialog procedure is provided with a label and called similarly to
the Tip Vortex dialog procedure. After the dialog procedure returns, a for loop is used to
sum the absolute values of the coefficients. The "+=" operator in the C programming
language causes the value of the expression following the operator to be added to the
value of the variable preceding the operator and the result to be stored in the variable - b ‘
preceding the operator. The "-="*, **=", and */=" operators function similarly. If the sum ‘
of the absolute values of the coefficients indicates the case where all of the coefﬁcients are

zero, a warning is printed and the dialog procedure is called again. As in the case of the » ¢
Geometry dialog box, if the run flag was cleared in the Coefficients dialog procedure, the
screen is repainted. ‘

The IDM_EXIT case handles request to terminate the program made by the main . o ¢

menu File|Exit selection. It uses essentially the same code described in Appendix A.2 in
the WM_DESTROY case of the MainWndProc function.

>’ ‘
case IDM_EXIT : {
//this case deletes the temporary file and terminates the program
iftaccess("plotdat.tmp"®, 0) == 0)
unlink("plotdat.tmp®); - » <
PostQuitMessage(0);
break;
}
The IDM_ABOUT case calls the About dialog box procedure. This dialog b ¢
procedure differs from those described previously in that it is not used to receive user
input data. Figure A-2 shows the VLL About dialog box.
» (

case IDM_ABOUT : {

119




//this case calls the About dialog box
digProc = MWM@W'M
DialogBox(ghinstance, *ABOUT", hWnd, digProc),
FreeProcInstance((FARPROC)dIgProc);
}

! Hydrofeil Vo ex Lilg Lise i
[Gle_Qpdens Help

CURRENT VARIABLE DATA
Number of Elements: 40

Hydsetoil Yoreex Liking Line Pragrem

Liting Line Algurithem by
Justia E. Kerwin

Windows Code by
David R Beckelt

Versian 1.0

Figure A-2. Windows™ VLL with About Dialog Box Displayed

The next nine cases provide the on-line Help feature included with VLL. The nine
cases are a series of MessageBox function calls that write descriptions of the operation of
the main menu and the theory behind the vortex lattice method employed. The
IDM_HELPGENERAL case is shown below as an example.

case IDM_HELPGENERAL :

{ MessageBox(hWnd, "The Hydrofoil Vortex Lifting Line Program \
applies a vortex lattice method to the straight line lifting problem.\n\n\
It calculates and displays both the exact and numerical solutions for \
induced downwash velocity, total lift, and total induced drag for a\
circulation distribution described by up to S Glauert coefficients.\n\n\
It then solves the ‘analysis’ problem by calculating and displaying \
the numerical approximation for the circulation distribution based on \

120

B




)

MB_OK

*

the exact downwash velocity solution.”,
ICONINFORMATION |
break;

121




ko

P i Tt

et

3 ..*& =

APPENDIX A4

functions.

VLL Di

»

122




A.4 VLL Dialog functions.

Dialog boxes are a convenient means for allowing the application user to provide
input to the program. The use of a single dialog box requires that two functions be added
to the functions described above. The first is a callback function, similar to the
MainWndProc. In the case of the Geometry dialog box in VLL, this function is declared
as follows:

BOOL CALLBACK _export DigProc(HWND hDIg, UINT message, WPARAM wParam,

LPARAM IParam),
The purpose of the function is to initialize the data displayed in the dialog box when it is
created, and to refer messages received by the dialog box to the second function.

The second function is similar to the WMCommand_Handler function, and for the
VLL Geometry dialog box is declared as follows:
void WMDIgCommand Handler(HWND hDlg, int id, HWND hwndCt, UINT codeNotify);

The purpose of this function is to handle messages recc.ved by the dialog box, specifically
messages from the "OK" or "CANCEL" buttons. The functions used in VLL for the
Geometry dialog box will be described here. The functions used for the Coefficients, Tip
Vortex Inset, and About dialog boxes are extremely similar and should be self-explanatory

when the two functions described here are understood.

The callback function is listed below:
BOOL CALLBACK _export DigProc(HWND hDig, UINT message, WPARAM wParam,
LPARAM [Param)
{
char  input[10]=""; /Icharacter string for writing output

switch(message)
{

case WM_INTTDIALOG : {

//initialize numerical and state dialog controls

123

S Rt A DT ey

» 7
.




Py ]
iftspacing_flag) ’ ‘
CheckRadioButton (hDig, IDM_COSINE, IDM_CONSTANT, »
] IDM_CONSTANT);
clse
CheckRadioButton (hDlg, IDM_COSINE, IDM_CONSTANT,
IDM_COSINE); »
[ )

if{controipt_flag)
CheckRadioButton (hDig,IDM_COSINECONTROL ,
IDM_MIDPOINT, IDM_MIDPOINT);
CheckRadioButton (hDig,IDM_COSINECONTROL ,
IDM_MIDPOINT, IDM_COSINECONTROL),

itoa(NUMBER_ELEMENTS, input, 10);
SetDigltemText(hDig, IDM_NUMOFELEMENTS, input),

return TRUE;
}
case WM_COMMAND : {

retum (BOOL)HANDLE_WM_COMMAND(hDIg, wParam, [Param,
WMDIgCommand_Handler);

return FALSE;

A cursory inspection of the callback function reveals that the function consists essentially
of a switch that handles two cases. Prior to the switch a character array, input, is declared

(] for the purpose of writing text data to the dialog controls. There are ten types of dialog ’
controls, only two of which are dealt with by the DigProc function.
A dialog box may have up to 255 controls, selected from the below listed types:
° Pushbuttons the type used for "OK" and "CANCEL" buttons >

124

L

P



Radio Buttons used to select an option from a group of mutually exclusive options

Check Boxes used to select or deselect options which can be toggled on and off
Static Text Fields  used to provide labels or instructions

Group Boxes allows grouping of a set of other controls

Listboxes used for selecting an option, such as a file name from a list

Edit Boxes allow the user to input text

Scroll Bars used to input a linear value

Icons used to provide visual input

Combination Boxes a combination of an edit box and a list box

The VLL program makes use of the pushbutton, radio button, group box, static text field,
and edit box types.

Controls that are used to display variable data and to receive user input are
assigned identifiers in order to make the program code more easily understood. The
appearance and operation of the dialog box is defined in a resource file that is part of the
application. The four dialog resource templates and the main menu used in VLL are
defined in the vil.rc file. The block of code used to define the VLL Geometry dialog box
is shown below. The entire vil.rc file is contained in Appendix A.6.

GEOMETRY DIALOG 11, 35, 175, 137
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION
CAPTION "Geometry”
BEGIN -

CONTROL **, IDM_NUMOFELEMENTS, "EDIT*, ES_LEFT | WS_CHILD | WS_VISIBLE |
WS_BORDER | WS_TABSTOP, 66, 87, 34, 15

CONTROL *Cosine", IDM_COSINE, "BUTTON", BS_AUTORADIOBUTTON | WS_CHILD |
WS_VISIBLE | WS_GROUP | WS_TABSTOP, 10, 20, 38, 13

CONTROL "Constant*, IDM_CONSTANT, "BUTTON", BS_AUTORADIOBUTTON |
WS_CHILD | WS_VISIBLE | WS_TABSTOP, 10, 39, 40, 14

CONTROL *Cosine®, IDM_COSINECONTROL, *BUTTON", BS_AUTORADIOBUTTON |
WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 95, 20, 38, 13

CONTROL "Mid-Point*, IDM_MIDPOINT, "BUTTON", BS_AUTORADIOBUTTON |
WS_CHILD | WS_VISIBLE | WS_TABSTOP, 95, 39, 45, 14

PUSHBUTTON "OK", IDM_OKGEOM, 31, 109, 36, 15, WS_CHILD | WS_VISIBLE |
WS_TABSTOP

PUSHBUTTON "CANCEL", IDM_CANCELGEOM, 100, 109, 36, 15, WS_CHILD |
WS_VISIBLE | WS_TABSTOP

125

Rt T

e

LA

HLITRR,

MRS

TR TR TR

T TR TR VAL

4
¥

T, < a4 TR TR
oy N e S i A O T
e es PO B T R X fod T o B B

s

2o

P AR

R R




CONTROL “Lattice Spacing®, -1, “"STATIC", SS_LEFT | WS_CHILD | WS_VISIBLE, 10, 7, 61,

9
LTEXT "Number of clements 40 Max", -1, 52, 63, 67, 17 »
CONTROL *Control Point Spacing”, -1, "STATIC", SS_LEFT | WS_CHILD | WS_VISIBLE,

95,7,71,9

CONTROL ™", -1, "static”, SS_BLACKFRAME | WS_CHILD | WS_VISIBLE, §, 4, 61, 51
CONTROL **, -1, "static®, SS_BLACKFRAME | WS_CHILD | WS_VISIBLE, 91, 4, 77, 51
CONTROL **, -1, "static®, SS_BLACKFRAME | WS_CHILD | WS_VISIBLE, 44, 60, 83, 45

END »
The first line of code defines the name, size, and screen position of the dialog

resource. The second line describes the style of the dialog box and third line defines the

caption displayed on the title bar. »
After the BEGIN statement, the individual controls are defined. The edit box that

displays and allows the user to alter the number of elements used in the program, for

example, is the first control descnbed It is defined as a dialog control of the edit box

[ ]
type. The pair of double quotes indicates that there is no automatic initialization of the
value of the box. IDM_NUMOFELEMENTS is an identifier used to refer to the control
in order to make the source code more readable. The flags that are joined together with » P

the logical "or* operators indicate how the control is to be drawn and processed by the
Windows™ environment. The last four numbers describe the location of the control in the
dialog box. 'Y

Dialog boxes may be constructed using a standard text editor, or using a graphical ,
development environment such as the BORLAND® Resource Workshop™. Figure A-3 |
shows the VLL Geometry dialog box in the BORLAND® Resource Workshop™

®
graphical development environment. The point and click capability of a graphical
environment makes the design and testing of dialog boxes fast and easy compared to the
alternative of defining them using a text editor and recompiling the application for each »
test.

®

126




’
Hecource Waorkshop DIALOG GEUME Ty
’
Lattice Spacing Centrel Point Spacing
O Cosine O Cosine - & | . ’
O Constant O mid-Point
Number of elements
40 Max »
»
> ©
Figure A-3. VLL Geometry Dialog Box in BORLAND® Resource Workshop™
The WM_INITDIALOG case in this function evaluates the spacing flag and the
. control point flag and checks the appropriate radio button using the CheckRadioButton »-
function. The CheckRadioButton function receives the handle of the dialog box, the
identifier of the first and last button in the group, and the identifier of the button that is to
¢ be checked. It checks the button indicated and removes the check from the other buttons »
in the group. The CheckRadioButton function does not return a value.
The WM_INITDIALOG case also initializes the edit control that indicates the
] number of elements into which the lifting line is discretized. This is done in two steps. »
First the current value of NUMBER_ELEMENTS is written as a character string into the
input variable array using the itoa function. The itoa function receives an integer value,
. the address of a character array, and the base to be used in converting the integer, and »

writes the integer value into the character string. In the second step, the SetDigltemText

127




function is used to write the character string in the input array into the edit control
indicated by IDM_NUMOFELEMENTS and contained in the dialog box indicated by
hDig. The case then returns the boolean value TRUE because the message was handled
by the function.

The WM_COMMAND case refers messages to the WMDIgCommand Handler
using the HANDLE_WM_COMMAND macro and returns the value returned by the
macro, indicating if the message was handled. If the message received by the callback
command does not correspond to either case in the switch, then the boolean value FALSE
is returned.

The second function used to handle the VLL Geometry dialog box, the
WMCommand_Handler function, is shown below:

void WMDIigCommand_Handler(HWND hDlg, int id, HWND hwndCu, UINT codeNotify)
{

char  input[10] =""; //character string for receiving
input

switch(id)
{

case IDM_OKGEOM : {

HWND hCtri; /Mandle to a dialog control
DWORD result; /fresult of an interrogation of
// a dialog button

//get the state of the radio buttons and set the spacing and control point flags accordingly

hCtrl = GetDigltem(hDig, IDM_CONSTANT);
result = SendMessage(hCtrl, BM_GETCHECK, 0, OL),
i

if (result) spacing flag=);

clse spacing_flag = 0;

hCtrl = GetDigltem(hDlg, IDM_MIDPOINT);.

result = SendMessage(hCtrl, BM_GETCHECK, 0, OL);

if (result) controlpt_flag =1,
else controlpt_flag = 0;

128

"o

® ofe




—

{/get the sumber of clements input and store it in a temporary location

GetDighemText(hDig, IDM_NUMOFELEMENTS, input, 10);
temp_clements = atoi(input);

liclear the run-flag to indicate that the user input data has changed
run_flag = 0;
//drop through to the processing for the CANCEL case
}
case IDM_CANCELGEOM : {
//end the dialog

The WMDIgCommand_Handler function, like the DigProc function, is essentially a
switch that handles two cases. Also like the DigProc function, prior to the switch a
character array, input, is declared. In this procedure the array is used for the purpose of
retrieving information from the dialog controls.

The IDM_OKGEOM case responds to the message sent when the user selects the
"OK" button in the dialog box. A handle to a window, hCtrl and a DWORD, result are
declared as local variables in this case. The case first uses the GetDiglItem function to get
a handle first to the Constant Vortex spacing radio button. It then uses the SendMessage
function to check the state of that button.

The GetDigltem function receives a handle to a dialog box and the identifier of a
control in that box and returns a8 handle to the control. The SendMessage function
receives a handle to a dialog box control, a message identifier, and two additional message
dependent items. In this case the message that is sent is a BM_GETCHECK message, the

129

> ol o

>’
K




two additional items are not used. The return values for the function when the message is
BM_GETCHECK are the integer 1 if the button is checked and 0 if it is not checked.

The case sets the value of the spacing flag and then repeats the process for the
control point spacing flag. The IDM_OKGEOM case then uses the GetDigitemText
function to copy the value in the Number of Elements edit box control into the input
character array. The atoi function converts the ascii string pointed to by its argument to
an integer value and returns that value.

The next statement clears the run flag on the assumption that some or all of the
data handled by the Geometry has changed. Since there is no break statement in the
IDM_OKGEOM case, program execution continues into the IDM_CANCELGEOM case
and the dialog box is terminated by the EndDialog function. If the user selects the
"CANCEL" button on the dialog box, the IDM_CANCELGEOM case is executed and the
dialog box is terminated without changing either of the spacing flags, the number of
elements, or the run flag.

Functions for initializing and retrieving the data from the Coefficients, Tip Vortex
Inset, and About dialog boxes are completely analagous to the functions described above.
The functions are part of the VLL program in the vll.c file, and listings can be found in

Appendix A.6.

130




APPENDIX A.S

The VLL Output functions.

- #

131




A.S The VLL Output functioas.

The VLL program uses four separate functions to provide output. Two provide
output to the monitor and two provide output to the system printer. Each pair consists of
a function that draws the current variable data and a function that draws the graphs and
table. The functions are described below.

A.5.1 The VLL paint_data_box function.

The VLL paint_data_box function receives a handle to the monitor device context
and draws the current variable data to the screen. A device context can be thought of as a
structure that contains information about the output device and how text, lines, or regions
are drawn on the output device. Output to a particular device is accomplished by a series
of GDI function calls. The best way to gain an understanding of the GDI and device
contexts is to closely inspect the functions that perform the output for VLL. The
paint_data_box function will be the first to be considered, and is shown below.

‘!hepnmt dua boxﬁmcuondmwsmmntvambledatatothepaseddmceoomex; *
daubox(l-mCPmntDC)

( - Y Py Py Y - - o

‘dedmmlablesﬂntmdeﬁnedmthevllcﬁleandtlnt wnllbeusedmthlsfnnamn *
e/

extern int conﬂolpt_ﬂag, sp.cmg_ﬂag, NUMBER ELEMENTS
extern float  tip_vortex_inset, coefficients[], width, height;

' Variable declanmns *
ann " et etetattts s oy
char buffer{120]; //ouffer for character output
int i, /Noop counter
length; /Nength of character output
HFONT hFont, //handle to the default font
hOidFont; //handle to the original font
132




Ifget & handie 1 the device default font
hFoat = GetStockFont(DEVICE_DEFAULT_FONT);
faclect the device default font
hOIdFont = SelectFont(PaintDC, hFout); ;Z
llenclose the current variabie data box in a pair of rectangles ’
Rectangle(PaintDC, (int)(1.0*width/640.0), (int)(0.0*height/430.0), :
(i0)(250.09width/640.0), (int)(25.0* eight/480.0)); :

Rectangle(PaintDC,(int)(1.0*width/640.0), (int)(25.0*height/480.0),
(int)(250.0*width/640.0),(int)(230.0°height/480.0));

o QNSO E

/Nabel the box
length = sprintRbuffer, “"CURRENT VARIABLE DATA"),
TextOut(PaintDC, (int)(39.0°width/640.0) , Q
(int)(5.0*height/480.0),
buffer, length);
/fwrite the varisble data
length = sprintf(buffer, “Number of Elements: %d",NUMBER_ELEMENTS); 6 P
TextOut(PaintDC, (int)(10.0width/640.0), ;
(in)(30.0*height/480.0), !
buffer, length); 'f
fwrite the tip vortex inset if applicable b
if{spacing _flag) { i
length = sprintf(buffer, *Tip vortex inset/ *);
TextOut(PaintDC, (int)(10.0°width/640.0), .
(int)(90.0*height/480.0),
buffer, length);
length = sprintf{buffer, * panel width: %3 4f", - :
tip_vortex_inset); i
TextOut(PaintDC, (int)(10.0*width/640.0),
(int)(110.0*height/480.0), t
buffer, length); W
i
length = sprintfibuffer,"Vortex Spacing: Constant™); a

}
length = sprintfibuffer, "Vortex Spacing: Cosine™);

133

¥
i
Bor
at
p
iii
;

¢
e




TextOut(PaintDC, (int)(10.0°width/640.0),
(int)(50.0*height/480.0),
buffer, leagth);

Iiwrite the comtrol point spacing sclection

ificontroipt_flag) _
length = sprintf(buffer, “Cont Pt Spacing: Midpoint”); »

length = spristf(buffer, “Cont Pt Spacing: Cosinc”);
TedtOut(PaintDC, (int)(10.0*widih/640.0),

(int)(70.0*height/430.0),
buffer, leagth); »
/twrite out the Glauert coefficients
for(i=0;i<S;i++){
length=sprintRbuffer, "Coefficicnt a%d: %+3.2f",i+1,
coefficients{i]); »
TextOut(PaintDC, (int)(10.0*width/640.0),
(int)(float)(130+i*20)*height/480.0),
buffer,length);
} » ©
Niselect the original font and delete the one created for this function '
SelectFont(PaintDC, bOidFont);
DeleteObject(hFont); b’

} )

After the function is declared, a declaration of the global variables that will be

used in the paint_data_box function is made. The extern keyword tells the compiler that »
the original declarations of the variables that follow it are made in a separate source code
file.
Five new variables are declared locally to the paint_data_box function. The ’
character array, buffer, is used to store the text strings that will be written to the screen.
The integer i is a loop counter and the integer length is used to indicate the length of the
]

string written into buffer. The last two variables declared are HFONT variables. An

134




HFONT is a handle to a font that is used to draw the text output. In this case two are
defined, a handle to the device default font, and a handle to the font originally specified
upon cresation of the device context.

The paint_data_box function uses the GetStockFont function to get a handle to the
monitor device default font, the font preferred by the monitor. The GetStockFont
function receives an unsigned integer and returns a handle to the specified font. The
device default font is then selected into the device context using the SelectFont function.
The SelectFont function receives the handle to the device context and the handle of a font,
selects the font into the specified device context and returns a handle to the font that was
replaced. The handle to the font originally in the device context is retained in hOldFont so
that it may be selected back into the device context at the end of the function and hFont
may be deleted. This is done to free the memory allocated to the font referred to by
hFont.

Next the rectangles that enclose the current variable data are drawn using the
Rectangle function.

Rectangle(PaintDC, (int)(1.0*width/640.0),(int)(0.0*height/480.0),

(int)(250.0*width/640.0),(int)(25.0*height/480.0));
The Rectangle function receives the handle to the device context and the Cartesian
coordinates of the upper left and lower right corners of the rectangle to be drawn. The
coordinate system used on the screen is determined by the mapping mode of the device
context. The default mapping mode is MM_TEXT. This means there is a one to one
correspondence between logical units and pixels, and that the upper left corner of the
client window is (0,0) with the positive x axis to the right and the positive y axis down the
screen.

In order to provide for device independent output to monitors of different
horizontal and vertical resolution, the logical coordinates are scaled by a factor of

135

B e e T L TP

o T AT g, " S T T T

® o‘oq




width/640.0 or height/480.0 as appropriate. The result is then cast as an integer. The
GDI recognizes integral coordinates since the finest resolution possible is one pixel.
After the rectangles are drawn, the data box is labeled.
length = sprintf{buffer, "“CURRENT VARIABLE DATA");
TextOut(PaintDC.(int)(39.0*width/640.0) ,
(int)(5.0*height/480.0),
buffer, length);
The sprintf function writes formatted character output to a character array and returns the
number of bytes written, minus the null terminating character. The TextOut function is
the most basic of the text drawing functions. It receives the handle to the device context
where the text is to be drawn, an integral client area coordinate where the text is to be
drawn, a pointer to the string to be drawn, and the iength of the string to be drawn, in
bytes.
The sprintf function is used in further, slightly more complicated statements, to
write output strings that include variable data to the character array. In the statement
" shown here the current integer value of NUMBER_ELEMENTS is included in the output
string. This is accomplished by using the %d format specifier to indicate where in the
string the integer value will be printed, and then including the variable name in the list of
output variables in the the sprinf statement.

length = sprintf(buffer, "Number of Elements: %d",NUMBER_ELEMENTS),

The paint_data_box function continues to test the vortex and controi point spacing
flags and provide appropriate output. A for loop is used to print each of the Glauert
coefficients. The format specifier, %+5.4f, is used in the statement that writes Glauert
coefficients to the buffer array. This indicates that a floating point number will be written,
showing four decimal places, and including the sign even if it is positive.

length=sprintfibuffer,"Coefficient a%d: %+5.2f",i+1,

136




coefBicieatsll);
TextOut(PaintDC,(int)(10.0*width/640.0), .
(int)((float)(130+i*20)*height/480.0), ;
buffer, length); :
The y coordinate in the TextOut function in this case is calculated using the index of the ; ’
coefficient. ’
The last two statements in this function use the SelectFont function to select the
original font back into the device context and the DeleteObject function to free the
memory associated with the font used to draw the text output. Since it is not permissible »
to delete a font, or any other object currently selected into the device context, the original
font must first be restored. The memory is freed since if it were not, the memory would
be effectively consumed and would not be released until termination of the current ’
Windows™ session.
A.5.2 The VLL paint_graphs function. ’
The second function used by VLL to draw output to the screen is the paint_graphs
function. It is shown below. _
» '.»7
,‘ﬂnpaim_paphsﬁmcﬁondmwsthegmphsandpereentemrdata Y hd
* on the passed device context ) » *
il pin_GaphaDC PinDC) ) / ’

/ *89 L -

* declare variables that are defined in the vil.c file and that will be used in this function *
sesesee seseseny

]
extern float  width, height;
7
* Variable declarations *
“““ . /
»
HFONT hFont, //andle to the default font
hSmaliFont, /Mandle to a small font
137 »
® X J e o _ e ® s °
bttt it aistttetivnindininintinadiitnd N Ottt sl et eIt s sl




HBRUSH

B

hFontVert,

hPenf2],
hThickPen,
hBrusk{2],

hWhiteBrush,
hOldBrush;

buffer{120];

origin,
orig[2]={{460,100},
{460,320} };

138

//mandle (0 a vertically
// oriented font
{/Mmandle for default font

/Nogical font structure for
// creating the fonts

/ipeas for drawing the data pts
{/pen for drawing axes
//mandle for default pen

Iforushes for drawing the data
Il points

Ifwhite brush

//handle for old brush

//oufTer for character output

/oop counter
/Nength of character output
//number of clements
/I (discretization)

//power of ten used in finding

// max value of w or circ

//percent error in lift, drag,
// and lift/drag*drag given w
// and given circ

//maximum and minimum values
/! for w and circ for scaling plots

//pointers to arrays of floats
/1 for storing plot data

//pointer to a file structure

/fpoint structure used for
// plotting data points

Hforigin of the current piot

lorigins of the velocity and

/f and circulation plots

» 7




//allocate memory for the vectors
w_ex = (float *) malloc((MAX_NUMBER_ELEMENTS+1)*sizeof (float));
w_num = (float *) malloc((MAX_NUMBER_ELEMENTS+1)*sizeof (float));
circ = (float *) malloc((MAX_NUMBER_ELEMENTS+1)*sizeof (float));
y_ cou = (float *) malloc((MAX_NUMBER_ELEMENTS+1)*sizeof (float));
gam = (float *) malloc((MAX_NUMBER_ELEMENTS+1)*sizeof (float));
//create red and blue pens and brushes to draw the graphs

hBrush{0] = CreateSolidBrush (RGB(255,0,0));
hPen{0] = CreatePen (PS_SOLID, 1, RGB(255.0,0));

hBrush{1] = CreateSolidBrush (RGB(0,0,255));
hPen[1] = CreatePen (PS_SOLID, 1, RGB(0,0,255));

hThickPen = CreatePen(PS_SOLID, 3, RGB(0,0,0));
hWhiteBrush = GetStockObject(WHITE_BRUSH);

/luse the device default font to fill a logical font structure
GetObject(GetStockFont(DEVICE_DEFAULT_FONT),sizeof(LOGFONT),&IFont);
{/get a handle to the device default font
hFont = CreateFontindirect(&1Font);
//alter the font size and create a small font for the axis labels
IFont.lfHeight = 10;
hSmallFont = CreateFontIndirect(&I1Font);

//alter the font size and orientation and create a vertically oriented font

1Font. IfEscapement = 900;
IFont.lfHeight = 14;

hFontVert = CreateFontIndirect(&IFont);
1/ set the background mode to transparent so the text doesn't overwrite data
SetBkMode(PaintDC, TRANSPARENT),
//open and read the temporary data file
plot = fopen("plotdat.tmp®, "r");
//read the number of elements
fscanf(plot,"%d",&NUM_ELEMENTS);

//read in the spanwise position of the control points, the exact circulation
// and downwash velocity, and the numerical downwash velocity and circulation

139

¥

Wi

=T QT SRR AR

S

~ s

N




for (i=1;i<=NUM_ELEMENTS;i++)

facanfiplot, "%l % %f %E %P, &y_contfi), &gamfi), &w_ex[il,

&w_pum{i], &circfi]);
//read in the percent esror values

facanf(plot, "3 %I %F %F %S %L, &pzw,&pxw,&prw,&pzg, &pxg. &prg).

//close the plot file
fclose (plot);

//Calculate the minimum and maximum values for w and circ
for(i=1;i<=NUM_ELEMENTS;i++) {

max_circ = max(gam|i],max(max_circ,circli]));
min_circ = min(gam{i},min(min_circ,circli]));
max_w = max(w_numl[i].max(max_w,w_ex{[i]));
min w = min(w_num{i],min(min_w,w_ex[i]));

}

//ensure that max_circ and max_w are equal to the largest magnitude
// circulation and velocity

max_circ = max(fabs(ceil(max_circ)),fabs(floor(min_circ)));
max_w = max(fabs(ccil(max_w)),fabs(floor(min_w)));

/linitialize m and multiply it by 10 until m*10 is greater than max_circ,
// then increase m by factors of 2 until m is greater than max_circ by no
// more than a factor of 2

m=0.001;
whille (m*10.0 < max_circ) m=m* 10.0;
while (m < max_circ) m=m#*20,

//set max_circ equal to m so the plot will be properly scaled

max_circ=m,

m=0.001;

while (m*10.0 < max_w) m=m* 10.0;
while (m < max_w) m=m*20;
max_w=m;

140

“‘




//set the min values oqual to the acgative of the max values
min_circ = -max_circ,

min w=-max_w;

//Draw and label graphs
/st the origin for the dowawash plot

origin. x = origldownwash].x;
origin.y = origldownwash).y;

//dzaw a box for the graph and use a box for the axes

Rectangle(PaintDC, (int){((origin. x-190)*width/640.0),
(int)((origin.y-100)*height/480.0),
(int)((origin.x+170)*width/640.0),
(int){(origin.y+110)*height/480.0));

Rectangle(PaintDC, (int)((origin. x-130)*width/640.0),
(int)((origin.y-75)*height/480.0),
(inf)((origin.x+131)*width/640.0),
(int)(origin.y+76)*height/480.0));

// select a thick pen and draw the axes
hOldPen = SclectPen(PaintDC, hThickPen);

MoveTo(PaintDC,(int)((origin.x-130)*width/640.0),
(int)(origin.y*height/480.0));

LineTo(PaintDC,(int)((origin.x+130)*width/640.0),
(int)(origin.y*height/480.0));

MoveTo(PaintDC, (int)(origin.x*width/640.0),
(int)((origin.y-75)*height/480.0));

LineTo(PaintDC,(int)(origin.x*width/640.0),
(int)((origin.y+75)*height/480.0));

/iplot the pumerical solution for downwash velocity
Nsclect the red pen and brush
SelectPen(PaintDC,hPen[0]);
bOMBrush = SelectObject(PaintDC, hBrush{0});
/Noop through all of the control points
for(=1;i<=NUM_ELEMENTS;i++) {

141

Sa—

-

s afa

e f-'n;».«.-—w'—"—vm -—'-ev.v--n-

f
{
¥
{
i
i
g
i

J




//calculate the x and y coordinates corresponding to each point

point.x=(int)((((y_cont]i}0.5)*130.0)+origin. x)*width)/640.0);
e point.y=(int)(((((-w_sum[i}/max_w)*75.0)+origin.y)*height)/430.0);

//draw a rectangle for the aumerical points

G

Rectangle(PaintDC,point. x-3,point.y-3,point.x+3,point.y+3);
e } ’
//print sample rectangle (numerical point)

point.x = 125*width/640.0;
point.y = 290*hcight/480.0;

Rectangle(PaintDC,point.x-3,point.y-3,point.x+3,point.y+3),

//select the blue pen and brush
SelectPen(PaintDC, hPen(1]), »
SelectObject(PaintDC, hBrush{1]);

{//Plot the exact solution for downwash velocity

INoop through all of the control points » q
for(i=1;i<=NUM_ELEMENTS;i++) {

//calculate the x and y coordinates corresponding to each point

point.x=(int)(((((y_cont[i}/0.5)*130.0)+origin.x)*width)/640.0); >’
L point.y=(int{((((-w_ex[il/max_w)*75.0)+origin.y)*height)/480.0);
//draw an ellipse for the exact points
Ellipse(PaintDC point x-2,point.y-2,point.x+2,point.y+2);
9 } »
// print sample Ellipse (exact point)
point.x = 125*width/640.0;
o point.y = 270*height/480.0; »

Ellipse(PaintDC,point.x-2,point.y-2,point.x+2 point.y+2);
//select the solid, thin, black pen, the white brush, and the small font
e SelectPen(PaintDC,hOldPen),
SelectObject(PaintDC, hWhiteBrush),

142




hOidFont = SelectFoat(PaintDC, hSmaliFont);
//align the text output o right adjusted and label the y axis
SetTextAlign(PaintDC,TA_RIGHT);

//draw the horizontal lines for the graph
for(i=-3;i<6,i++) ¢

MoveTo(PaintDC, (int)((origin.x-132)*width/640.0),
(int)((origin.y-i*15)*height/430.0));

LineTo(PaintDC, (int)((origin. x+130)*width/640.0),
(int)((origin.y-i*15)*height/480.0));

/Nabel each horizontal line, the number of decimals displayed depending
// on the magnitude of the maximum value
ifimax_w < 10.0) {

length = sprintfibuffer, “%4.2f",(max_w/5.0) * i),
TextOut(PaintDC,(int)((origin. x-140)*width/640.0),

(int)((origin.y-i*15-3)*height/480.0),
buffer, leagth);

length = sprintfibuffer, “%4. 1f*,(max_w/5.0) * i);

TextOut(PaintDC, (int)((origin.x-140)*width/640.0),
(int)((origin.y-i*15-3)*height/480.0),
buffer, length);

}
/frestore the text alignment to Jeft adjusted and label the x axis
SetTextAlign(PaintDC,TA_LEFT);
for(i=-5,i<6;i++) {

MoveTo(PaintDC, (int)((origin.x+i*26)*width/640.0),
(int)(((origin.y+77)*height/480.0)));

143

?
i
]
:
b
9’.‘

g Y

e R B T

i

£

=
bl 22 Socdy

yAp S

I
¥

{4
¥
1

=i
i
b,(

1

"l
£




LineTo(PaintDC, (int)((origin. x+1*26)*width/640.0),
(int)(((origin.y-75)*beight/480.0))),

‘ length = sprintf{bufler, *%2. 1£°,0.1%);

TextOut(PaintDC, (int){(origin. x-8+i*26)*width/640.0),
(int)((origin.y+80)*height/480.0),
buffer, leagth);
. } »
/irepeat the process for the circulation graph

origin.x = origjcircu).x;
origin.y = orig{circul.y,

¢ Rectangle(PaintDC, (int)((origin.x-190)*width/640.0),
(int)((origin.y-100)*height/480.0),
(int)((origin.x+170)*width/640.0),
(int)((origin.y+110)*height/480.0));

Rectangle(PaintDC, (int)(origin.x-130)*width/640.0), ’
¢ (int)((origin.y-75)*height/480.0),
(int)(origin. x+131)*width/640.0),
(int)((origin.y+76)*height/480.0));

SelectPen(PaintDC,hThickPen),

¢ MoveTo(PaintDC, (int)((origin.x-130)*width/640.0),
(intXorigin.y*height/480.0));

LineTo(PaintDC,(int)(origin.x+130)*width/640.0),
(int)(origin.y*height/480.0));

‘ MoveTo(PaintDC, (int)(origin. x*width/640.0), L
(int)((origin.y-75) *height/430.0)); .

LineTo(PaintDC,(intX(origin.x*width/640.0),
(int)((origin.y+75)*height/480.0));
SelectPen(PaintDC, hPen[0]);
SelectObject(PaintDC, hBrush[0]);
for(i=1;i<*NUM_ELEMENTS;i+) »

point.x=(nt)((((y_cont{i}0.5)*130.0) +origin.x) *width)/640.0);
point.y=(int)}((((-gami}/max_circ)*75.0)+origin.y)*height)/480.0);

Rectangle(PaintDC, point x-3,point.y-3,point.x+3,point.y+3);
] } »

SelectPen(PaintDC hPen]1]);

144




SelectObject(PaistDC, hBrush{1]);
for(i=1,i<=NUM_ELEMENTS;i++) {

point.x=(int)(((((y_comt{i}/0.5)*130.0)+origin.x)*width)/640.0),
point.y=(int)(((((-circ{i)/max_circ)*75.0)+origin.y)*height)/480.0),

Ellipse(PaintDC,point.x-2,point.y-2,point.x+2,point.y+2),
}

SelectPen(PaintDC,hOldPen);

SelectObject(PaintDC, hWhiteBrush);

SetTextAlign(PaintDC,TA_RIGHT);

for(i=-5;i<6;i++) {

MoveTo(PaintDC, (int)((origin.x-132)*width/640.0),
(intX(origin.y-i*15)*height/480.0));

LineTo(PaintDC, (int)(origin. x+130)*width/640.0),
(int)((origin.y-i*15)*height/480.0));

ifimax_w < 10.0) {
length = sprintfibuffer, "%4.2f",(max_circ/5.0) * i);
TextOut(PaintDC, (int)((origin.x-140)*width/640.0),

(int)((origin.y-i*15-3)*height/480.0),
buffer, length);

else {
length = sprintf(buffer, “%4.1f",(max_circ/5.0) * i),
TextOut(PaintDC,(int)((origin. x-140)*width/640.0),

(int)((origin.y-i*15-3)*height/480.0),
buffer, length);

}
SetTextAlign(PaintDC,TA_LEFT),
for(i=-5,i<6;i++) {

MoveTo(PaintDC, (int)((origin.x+i*26)*width/640.0),
(int)(((origin.y+77)*height/480.0)));

145

.i
K




LineTo(PaimtDC, (int)((origin. x-+i*26)*width/640.0),
. (imt)((origin.y-75)*height/430.0)));

leagth = spriatfbuffer, “%2.11",0.1%);
TextOut(PaintDC, (int)((origin.x-8+i*26)*width/640.0),
(int)((origin.y+80)*height/480.0),
3 buffer, leagth); [ ]
)
Ifsslect the vertical font and lsbel the y axes
SelectFoat(PaintDC, hFontVert); »
length = sprintRbuffer, "W/U");
TextOut(PaintDC, (int)(275.0*width/640.0),
(int)X(120.0*height/430.0),
] buffer, length); >
length = sprintf(buffer, "NON-DIM CIRC");
TextOut(PaintDC, (int)(275.0*width/640.0),
(int)(350.0*height/480.0),
. buffer, length); » ©

J/select the device default font back into the device context, label the
// x axes and the sample ellipse and rectangle

SelectFont(PaintDC, hFont);

length = sprintf{buffer, “SPANWISE POSITION Y/S"),

TextOut(PaintDC, (int)(370.0*width/640.0),
(int)(190.0*height/480.0),
buffer, length);

TextOut(PaintDC, (int)(370.0%widih/640.0),
(int)(410.0*height/480.0),
buffer, length);
length = sprintf(buffer, "Exact:");
‘ TextOut(PaintDC, (int)(55.0*width/640.0),
(int)(260.0*height/420.0),
* buffer, length);
length = sprintfbuffer, “Approx.”);
TextOut(PaintDC, (int)(S5.0*width/640.0),

(int)(280.0*height/480.0),
buffer, length);

146




//draw the percent error box and fill in the values

Rectangle(PaintDC,(int)(1.0°width/640.0),(int)(300.0*height/480.0),
(int)(230.0*width/640.0), (int)(340.0* height/430.0)),

Rectangle(PaintDC,(int)(1.0*width/640.0),(int)(340.0*height/480.0),
(int)(230.0*width/640.0),(int)(360.0* height/480.0));

length = sprintf{buffer, "Exror in Predictions”);
TextOu(PaintDC, (int)(28.0°width/640.0),
(int)(305.0*height/430.0),
buffer, length);
leagth = sprine(buller, “for Fz, Fx, Fx/(F2)**2"%
TextOut(PaintDC, (int)(25.0*width/640.0),
(int)(320.0*beight/480.0),
buffer, length);
length = sprintfibuffer, "Given Gamma(y)");
TextOut(PaintDC, (int)(54.0*width/640.0),
(int)(342.0*height/480.0),
buffer, length);

Rectangle(PaintDC,(int)(1.0*width/640.0),(int)(360.0*height/480.0),
(int)X(77.0*width/640.0),(int)(380.0*height/480.0)),

Rectangle(PaintDC,(int)(78.0*width/640.0),(int)360.0*height/480.0),
(int)(153.0*width/640.0),(int)(380.0*height/480.0));

Rectangle(PaintDC,(int)(154.0*width/640.0),(int)(360.0*height/480.0),
(int)(230.0*width/640.0),(int)(380.0*height/480.0));

Rectangle(PaintDC, (int)(1.0°width/640.0),(int)(380.0* height/480.0),
(int)(230.0*width/640.0),(int)(400.0* height/480.0));

Rectangle(PaintDC (int)(1.0*width/640.0),(int)(400.0*height/480.0),
(int)X(77.0*width/640.0),(int)(420.0*height/480.0));

Rectangle(PaintDC,(int)(78.0*width/640.0),(int)(400.0*height/480.0),
(int)(153.0*width/640.0),(int)(420.0*height/480.0));

Rectangle(PaintDC,(int)(154.0*width/640.0),(int)(400.0*height/480.0),
(int)(230.0*width/640.0),(int)(420.0*height/480.0));

length = sprintRbuffer, "Given w*(y)%);
TextOut(PaintDC, (int)(70.0*width/640.0),

(int)(382.0*height/480.0),
buffer, length);

147

i
£

E ey g
"", ISR TR

£
i
t

i




leagth = sprintfbuffer, “%3. 10%".pzg);
TextOw(PainDC, (int)(25.0*widih/640.0), |
(i)(402.0*height/490.0), »
bufler, longth); 0
length = sprintfbufliee, “%3. 115", pxg);
TextOut(PaintDC, (int)(102.0*width/640.0), |
(int)(402.0*height/430.0), »
buffer, leagth),
length = sprintfbuffer, *%3. 11%",prg);
TextOut(PaintDC, (int)(178.0*widih/640.0),
(int)(402.0*height/480.0), ’
buffer, length);
length = sprintf{buffer, *%3. 1f%",pzw);
TextOut(PaintDC, (int)(25.0*widih/640.0),
(int)(362.0*height/480.0), »
buffer, length);
length = sprintfbuffer, "%3. 11%",pxw);
TextOut(PaintDC, (int)(102.0*width/640.0),
(int)(362.0*height/480.0), » ©
buffes, Jength);
length = sprintfbuffer, *%3. 11%",prw);
TextOut(PaintDC, (int)(178.0*width/640.0), ,
>’

(int)(362.0*height/480.0),
buffer, length); ‘

{/select the original font, pen, and brush

148




DeleteObject(hSmaliFont);
DeleteObject(hFont Vert);
//free the allocated memory

froe( w_ex );

froe( w_sum );

froe( circ );

free( y_cont);
free( gam ),

As in the paint_data_box, a declaration of the global variables that will be used in
the function is made after the function declaration . Several new variables are also
declared locally to the function. Instead of describing them at this point, they will be
explained along with the main body of the function.

This function uses the malloc function at run time to allocate memory for the data
to be plotted. Its usage is illustrated below. The malloc function receives the number of
bytes of memory heap to allocate and returns a pointer the allocated memory. In this case

the pointer is then cast as a pointer to an array of floats and assigned to w_ex.

w_ex = (float *) malloc((MAX_NUMBER_ELEMENTS+1)*sizeof (float));

This is repeated for all of the dynamically allocated variables in the paint_graphs function.
A pair of brushes and pens are then created. The hBrush variable is an array of

two brushes, a red brush and a blue brush. The brush selected in a device context controls
how shapes such as rectangles and ellipses will be drawn. Specifically, the brush controls
how the internal region will be drawn. The pen selected in a device context controls how
lines or the borders of shapes such as rectangles and ellipses will be drawn. The
paint_graphs function uses the CreateSolidBrush function to create the red and blue
brushes. The function receives a color reference returned by the RGB macro and returns a
handle to the new brush. The RGB macro receives an intensity between 0 and 255 for the
red, green, and blue components and returns a color reference based on the specified

149

;
1
€
B
K
fi
%
(5
2
B

= :‘-T".“»”’T ol

i"
i
s

)




intensities and the capabilities of the output device. A solid white brush is also created,
but instead of the CreateSolidBrush function, the GetStockObject function is used. The ’
GDI has several predefined objects, including a white brush. The GetStockObject
function receives an integer identifier and returns a handle to the stock object.

The CreatePen function is used to create the red and blue pens and a thick black »
pen. The function receives a line style, in this case solid, a line thickness in pixels, and a
color reference. It returns a handle to the new pen.

The function then creates fonts that will be used to draw text output. The first »
step is to fill a logical font structure, [Font, using the attributes of the device default font.
This is done by using the GetObject function. The GetObject function receives a handle to
an object, the size of a buffer to receive data describing the object, and the address of the »
buffer. In this case the handle is the return value of the (_ietStockFont function, the

address of the buffer is the address of the logical font structure, and the size of the buffer

is the size of a LOGFONT structure. The LOGFONT structure is defined as follows: » ®
typedef struct tagLOGFONT { /*If %/
int fWidth;
int HEscapement,; '
int 1fOrientation; ,
int fWeight;
BYTE Hitalic;
BYTE fUnderline;
BYTE IfStrikeOut,
BYTE fCharSet; ®
BYTE 1fOutPrecision;
BYTE IfClipPrecision;
BYTE Quality;
BYTE IfPitchAndFamily;
BYTE fFaceName[LF_FACESIZE];
} LOGFONT; »
The address of the logical font structure is then passed to the CreateFontIndirect function
which creates a font with the attributes described in the structure and returns a handle to
[ ]

the new font. The attributes in the logical font structure are then modified and a small

150




font, hSmallFont, and a vertically oriented font, hFontVert are created. The lfHeight
parameter of the I.OGFONT structure specifies the cell height of the font in logical units.
The IfEscapement parameter specifies the orientation of the text in tenths of a degree
counterclockwise from the positive x axis.

VLL now sets the background mode for the device context using the SetBkMode
function. The SetBkMode function can set the background mode to OPAQUE, which is
the default, or TRANSPARENT. The OPAQUE mode causes the screen area under text
that is printed to first be repainted with the background color. The TRANSPARENT
mode causes the text to be printed directly over the pre-existing background.

SetBkMode(PaintDC, TRANSPARENT),

The paint_graphs function then reads the data to be plotted from a temporary plot
file, plotdat.tmp, that was created at run time for the current data set. The file is opened
using the fopen function. The fopen function receives a character constant file name string
and a character constant mode, in this case "r" for read only, and returns a pointer to a
stream. In this instance the value of the pointer is assigned to plot, a pointer to a file

structure. A file structure is defined as follows;

typedef struct(
short level;
unsigned flags;
char fd;
unsigned char hold;
short bsize;
unsigned char *buffer, *curp;
unsigned : istemp;
short token;

} FILE;

The paint_graphs function then uses the fscanf function to read the number of data points
to be nlotted, the values of spanwise control point position, circulation, and downwash

velocity, both exact and numerical values, and the percent error values. The data file is

151




r— —

then closed using the fclose function, which receives a pointer to a file stream and returns

v Swv

o 0 if successful and EOF if not successful. EOF is a constant that indicates that the end of »
a file has been reached.
lopen and read the temporary data file

¢ plot = fopen("plotdat tmp?, *r"); ’
//read the number of clements

facanf(plot,"%d", &NUM_ELEMENTS);

//read in the spanwise position of the control points, the exact circulation
// and downwash velocity, and the numerical downwash velocity and circulation

for (i=1;i<=NUM_ELEMENTS;i++)

" fscanf(plot,"4f %E %I %f %F", &y_cont(i], &gam[il, &w_ex[il, ®
&w_numli], &circli]);
//read in the percent error values
fscanf(plot, "%f %l %f %l %f %L, &pzw,&pxw,&prw,&pzg, &pxg, &Pre);
® ¢ //close the plot file ’
fclose (plot);

° The paint_graphs function proceeds by finding the maximur and minimum values >
of circulation and downwash velocity that will be plotted. This is done by looping through .i
all of the data and using nested max or min statements. For illustration purposes, the

° max_circ case is described. »

The max macro compares two values of the same type and returns the larger of the
two values. In the statement shown here, max_circ is compared with the numerical

° circulation value, circ[i], and the returned value is compared with the exact circulation »
value, gam[i]. The value returned from this comparison is assigned to the max_circ
varisble. This process is repeated over the range of control points so that the final value

0 of max_circ is the largest circulation value that will be plotted. »

o 152 >




r——_———->

T v

//Calculate the minimum and maximum values for w and circ
for(i=1;i<=NUM_ELEMENTS;i++) (

max_circ = max(gam|i],max(max_circ,circfi])),
min_circ = min(gami),min{min_circ,circfi]));

max_w = max(w_num[i], max(max_w,w_ex[i]));
min_w = min(w_oum[i],min(min_w,w_ex[i]));

}

The values of max_circ and max_w are then adjusted to integral values just greater
than or equal to the larger of the magnitudes of max and min values to be plotted. This is
done using the floor and ceil functions, for the purpose of provide an integral range on the
ordinates of the plots. The floor function returns the largest integer that is not greater
than the argument and the ceiling function returns the smallest integer not less than the
argument.

//ensure that max_circ and max_w are equal to the largest magnitude
1/ circulation and velocity

max_circ = max(fabs(ceil(max_circ)),fabs(floor(min_circ)));

max_w = max(fabs(ceil(max_w)),fabs(floor(min_w)));

The next ten lines of executable code adjust the maximum and minimum values to
the y axes of the plots so that the x axis is in the middle of the plot and the vertical extent
of the plotted data covers at least half of the vertical scale in either the positive or negative
direction. This is done to give the plotted data a reasonable scale with respect to the plot

area.

//initialize m and multiply it by 10 until m*10 is greater than max_circ,
// then increase m by factors of 2 until m is greater than max_circ by no

{/ more than a factor of 2
m=0.001;
while (m*10.0 < max_circ) m=m * 10.0;
while (m < max_circ) m=m*20;

//set max_circ equal to m so the plot will be property scaled

153

ol

S r R SRR e S R T

PR




o

"v

max_circ =m;

m=0.001;

while (m*10.0 < max_w) m=m? 100
while (m < max_w) m=m¢20;
max_w=m;

I/3et the min values equal to the negative of the max values
min_circ = -max_circ;

min_w = -max_w;

The origin is then set to the origin of the downwash velocity plot and the box
outlines of the graph and the plot region are drawn using the Rectangle function.

//set the origin for the downwash plot

origin.x = orig[downwash).x;
origin.y = orig[downwash].y;

//draw a box for the graph and use a box for the axes

Rectangle(PaintDC, (int)((origin.x-190)*width/640.0),
(int)((origin.y-100)*height/480.0),
(int)((origin.x+170)*width/640.0),
(int)((origin.y+110)*height/480.0)),

Rectangle(PaintDC, (int)((origin.x-130)*width/640.0),
(int)((origin.y-75)*height/480.0),
(int)({origin.x+131)*width/640.0),
(int)((origin.y+76)*height/480.0));

<=

The x and y axes are then drawn using the thick pen. The MoveTo and LineTo
functions are used for this purpose. The MoveTo function receives a handle to the device
context and a Cartesian screen coordinate and moves the current position to the
coordinate. The LineTo function also receives a handle to the device context and a
Cartesian screen coordinate. The LineTo function causes a line to be drawn to the device
context from the current position to the specified coordinate, using the pen selected in the

device context.

154

>




/1 select a thick pen and draw the axes
hOidPen = SelectPen(PaintDC,hThickPen);

MoveTo(PaintDC,(int)((origin.x-130)*width/640.0),
(int)(origin.y*height/480.0));

LineTo(PaintDC,(int)((origin.x+130)*width/640.0),
(int)(origin.y*height/480.0));

MoveTo(PaimtDC,(int)(origin. x*width/640.0),
(int)((origin.y-75)*height/480.0));

LineTo(PaintDC, (int)(origin.x*width/640.0),
(int)((origin.y+75)*height/480.0));

The numerical solution for downwash velocity is then plotted using the red pen
and brush. A for loop is used to index through each point and calculate the associated
screen coordinate and draw a red rectangle centered at the screen coordinate.

SelectPen(PaintDC,hPen[0]);

hOldBrush = SelectObject(PaintDC,hBrush{0]);

{/Mloop through all of the control points
for(i=1;i<=NUM_ELEMENTS;i++) {
//calculate the x and y coordinates corresponding to each point

point. x=(int)(((((y_cont[i}/0.5)*130.0)+origin.x)*width)/640.0);
point. y=(int)(((((-w_num([i}/max_w)*75.0)+origin.y)*height)/480.0);

//draw a rectangle for the numerical points
Rectangle(PaintDC, point.x-3,point.y-3,point.x+3,point y+3);
}
A sample rectangle is then printed. It will be used as part of the plot legend.
//print sample rectangle (numerical point)

point.x = 125*width/640.0;
pointy = 290*height/480.0;

Rectangle(PaintDC,point.x-3,point.y-3,point.x+3,point.y+3);

155

"




The process is repeated for the exact solution for downwash velocity, using blue circles
instead of red rectangles. The code is shown above and is not repeated here.

The thin black pen, small font, and white brush are then selected into the device
context for the purpose of labeling the graph and filling in the horizontal and vertical lines
on the graph. The text alignment is set to right adjusted using the SetTextAlign function
prior to printing . The SetTextAlign function receives a handle to the device context and a
text alignment flag. The text alignment flag can be any of the following:

TA_CENTER horizontally centered

TA_LEFT  aligned to the left

TA_RIGHT aligned to the right

//sclect the solid, thin, black pen, the white brush, and the small font
SelectPen(PaintDC,hOldPen);
SelectObject(PaintDC, hWhiteBrush),
hOldFont = SelectFont(PaintDC,hSmallFont);

/falign the text output to right adjusted and label the y axis
SetTextAlign(PaintDC,TA_RIGHT);

A for loop containing MoveTo, LineTo, sprintf, and TextOut function calls is then
used to draw the horizontal lines and label the y axis. The number of decimal places
drawn in the y axis labels is selected as one or two depending on the range of the graph.

//draw the horizontal lines for the graph
for(i=-5;i<6;i++) {

MoveTo(PaintDC, (int)((origin.x-132)*width/640.0),
(int)((origin.y-i*15)*height/480.0));

LineTo(PaintDC,(int)(origin.x+130)*width/640.0),
(int)((origin.y-i*15)*height/480.0));

156

.-i
i




N N

/Nabel cach horizontal line, the number of decimals displayed depeading
// on the magnitude of the maximum value
iffmax_w < 10.0) {
" length = sprintf(buffer, “$%4. 26" (max_w/S.0) * i);
TextOut(PaintDC, (int)((origin.x-140)*width/640.0),
(int)((origin.y-i*15-3)*height/480.0),
buffer, leagth);
else {
length = sprintfibufler, "%4. 11", (max_w/5.0) * i);
TextOut(PaintDC, (int){(origin.x-140)*width/640.0),

(int)((origin.y-i*15-3)*height/480.0),
buffer, length),

After restoring the text alignment to TA_LEFT, the default value, another for loop
containing MoveTo, LineTo, sprintf, and TextOut function calls is used to draw the
vertical lines and label the x axis.

{irestore the text alignment to left adjusted and tabel the x axis
SetTextAlign(PaintDC,TA_LEFT);
for(i=-5;i<6;i++) {

MoveTo(PaintDC, (int)((origin. x+i*26)*width/640.0),
(int)(((origin.y+77)*height/480.0)));

LineTo(PaintDC, (int)(origin.x+i*26)*width/640.0),
(int)((origin.y-75)*height/480.0)));

length = sprintfibuffer, “%2.11",0.1%i);
TextOut(PaintDC, (int)((origin.x-8+i*26)*width/640.0),

(int)((origin.y+80)*height/480.0),
buffer, length);

157

it T o T e S oy 1o e ail yrov g 3o g pp A v S g

)
[
|
)
4

TG S

T T T RS (20

n}ef"ﬁ“!‘v* :rv-».e.,f i 3




}

The origin is then reset to the circulation graph origin and the entire process,
except for drawing the sample rectangle and ellipse, is repeated for the circulation graph.
The code is shown above and is not repeated here. The vertical and device default fonts
are then used in conjuction with sprintf and TextOut calls to label the graphs and the plot

legend.

//select the vertical font and label the y axes
SelectFont(PaintDC,hFontVert);
length = sprintf(bufer, "W/U");

TextOut(PaintDC, (int)(275.0*width/640.0),
(int)(120.0*height/480.0),
buffer, length);

length = sprintf{buffer, “NON-DIM CIRC"),

TextOut(PaintDC, (int)(275.0*width/640.0),
(int)(350.0*height/480.0),
buffer, length);

//select the device default font back into the device context, label the
// x axes and the samplie ellipse and rectangle

SelectFont(PaintDC, hFont);
length = sprintf(buffes, "SPA*'WISE POSITION Y/S");

TextOut(PaintDC, (int)(370.0*width/640.0),
(int)(190.0%height/480.0),
buffer, length);

TextOut(PaintDC, (int)(370.0*width/640.0),
(int)(410.0*height/480.0),
buffer, length);

length = sprintfbuffer, "Exact:");

TextOut(PaintDC, (int)(55.0*width/640.0),
(int)(260.0*height/480.0),
buffer, length);

length = sprintRbuffer, " Approx:");
TextOut(PaintDC, (int)(55.0*width/640.0),

158




" (int)(280.0°height/480.0),
buffer, leagth);

The percent error data box is then drawn with a series of Rectangle function calls
and filled in with sprintf and TextOut calls. The screen output is complete at that point.
The original font, pen, and brush are selected ba:k into the device context and the fonts,
pens, and brushes created for the paint_graphs function are deleted. The memory
allocated for the plot data is freed and the function terminates without a return statement.
The code is shown above and not repeated here.

A.5.3 The VLL print_data_box and print_graphs functions.

VLL uses two functions to draw output to the system printer. The first is the
print_data_box function. The print_data_box function is nearly identical to the
paint_data_box function. The difference is that while the paint_data_box function uses the
globally defined width and height variables that are initialized in the WM_CREATE case
in the MainWndProc function, the brint_data_box function declares local width and height
float variables and calculates the horizontal and vertical display size internal to the
function. These code segments are shown below.

'
* Variable declarations *
. . . e/
float  width, " liscale factors for ensuring the
height; // graphical output is scaled to
// 2 640 by 480 window

//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats

width = (float)GetDeviceCaps (PaintDC, HORZRES);

height = (floaf)GetDeviceCaps (PaintDC, VERTRES);
//since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that aspect ratio

if{ (width/height)>(4.0/3.0))
width = height*(4.0/3.0);
clse
height = width*(3.0/4.0),

159

i
i<
R
{




The second function used by VLL to draw output to the system printer is the
print_graphs function. The print_graphs function, like the print_data_box function, is
nearly identical to its screen painting counterpart. The difference between these two

functions is also in the local declaration and calculation of the width and height variables.

These code segments are shown below.
* Varisble declarations .
]
float width, //scale factors for ensuring the
height; // graphical output is scaled to

/1 a 640 by 480 window

//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats

width = (float)GetDeviceCaps (PaintDC, HORZRES);
height = (float)GetDeviceCaps (PaintDC, VERTRES);

//since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that aspect ratio

ift(width/height)>(4.0/3.0))
width = height*(4.0/3.0);
else
beight = width*(3.0/4.0);

160

.i
i




APPENDIX A.6

S ai.lel._i,.zf,

gs.

VLL program listi

161




A.6 VLL program listings.

The VLL Windows™ application uses thirteen files. Listings for these files are
included with this document as Appendix A.6 on a 3.5 inch, IBM PC formatted, double
sided, high density floppy disk. The files are saved in an ASCII text format which can be
read using a DOS text editor or any word processor capable of reading DOS text files.
Theoompleteﬁlesofthisandtheoﬂwrpmminthisthesismnothdudedinthg
written text of the thesis in the interest of limiting the size of the document. This page is
included with the listings in a file named README. TXT.

The files included on the disk are described below.

VLL.C

PRTGRA.C

NEWSOLVE.C

PRTBOX.C
PNTBOX.C
PRTGRA.C
VLL.DEF
VLLRC
VORTEX.C
HEADER.H
VLLH

README.TXT

-contains the WinMain, MainWndProc, WMCommand_Handler,
and dialog box functions.

-contains the print_graphs function.

-contains the LUdecomposition and LUbacksubstitution functions.
-contains the print_data_box function.

-contains the paint_data_box function.

-contains the paint_graphs function.

-the module definition file.

-contains definitions of the resources used in the VLL program.

-contains the vortex function.

-contains the #define and #include statements for the VLL program.

-contains the definitions of the Windows™ identifiers.

-contains a copy of this page.

The following files are not readable text files.

FOIL.ICO

VLL.PRJ

-describes the icon used to represent the program in the
Windows™ Program Manager.
-the project file read by the compiler.

162




APPENDIX B

2D Vortex/Source Lattice with Lighthill Correction Program Code.

163

g e




) [ ]
APPENDIX B.1

[ [ ]

’ » O

» .7

The VLMLE WinMain, MainWnsProc, and WMCommand_Handler functions.

J ’

J »

J »
164




B.1 The VLMLE WinMain, MainWadProc, and WMCommand_Handler
functions.

The WinMain, MainWndProc, and WMCommand_Handler functions in the
VLMLE Windows™ application program are very similar to those of the VLL
application. For this reason, the discr:ssion of the functions will consist mainly of a
comparison of the differences between the VLMLE functions and their VLL counterparts.

B.1.1 A comparison of the VLL and VLMLE WinMain functions.
The WinMain function for VLMLE differs from the WinMain function for VLL,
essentially, only in the addition of the SetTimer function call shown below.

//create a timer
SetTimer(hWnd,ID_TIMER,100,NULLY};

The SetTimer function call is made immediately following the creation and display
of the main window. The SetTimer function receives the handle to the window for which
a timer is being set, a Windows™ identifier for the timer, the time-out duration in
milliseconds, and the instance address of the timer procedure. In this case, the handle of
the main window is specified as the window associated with the timer. IDM_TIMER is an
identifier that is defined in the VLMLE header.h file. The NULL value for the instance
address of the timer procedure and the 100 for the time-out value mean that the timer will
cause a WM_TIMER message to be posted in the application message queue every tenth
of a second. Since Windows™ provides only a limited number of timers, it is important to
make judicious use of them and to properly terminate their use in order to return them to
the operating environment for use by other applications. This will be taken care of in the

MainWndProc function.

B.1.2 A comparison of the VLL and VLMLE MainWndProc functions.

165




The differences between the MainWndProc functions for the VLL and VLMLE
functions are more extensive than those of the WinMain functions. The VLMLE
MainWndProc function is shown below.

LRESULT CALLBACK _export MainWndProc(HWND hWnd, UINT message,
WPARAM wParam, LPARAM [Param)
{

switch (message)
lltfxis case refers menu selections to the WMCommand_Handler function
casc WM_COMMAND :
( return HANDLE_WM_COMMAND(hWnd, wParam, IParam, WMCommand_Handler),

}
casc WM_PAINT :
//thii case handles painting the screen
HDC PaintDC, //handle to a device context
PAINTSTRUCT ps; {/paint structure
//prepare hWnd for painting and fill the paint structure, ps
PaintDC = BeginPaint(hWnd, &ps);
{/paint the data box whenever the screen is repainted
paint_data_box(PaintDC );

//paint the graphs if the fortran executable has been run andthevanable
// data has not changed since it was run

ifirun_flag)
paint_graphs(PaintDC),
//mark the end of painting hWnd and return 0
EndPaint(hWnd, &ps);
return 0;
}
case WM_TIMER :

166



® ofe

/Rthis case is executed each timer interval. it looks for the file that
// indicates the fortran executable is terminating and then repaints the
// screen and sets the run flag

if{access(“vimie.dne®, 0) == 0) {

RECT temp rect; /hemporary rectangle structure

HDC tempDC; //Mandle to a temporary device
// context

float  width, //scale factors for ensuring the

height; // graphical output is scaled to

" by 480 window

//get a handle to the screen device context
tempDC = GetDC(hWnd);

//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats

width = (float)GetDeviceCaps (tempDC, HORZRES),
height = (float)GetDeviceCaps (tempDC, VERTRES);

//since the normal display aspect ratio is 4 to 3, ensure that the graphical
1/ output made by the program is in that aspect ratio

if{(width/height)>(4.0/3.0))
width = height*(4.0/3.0);
else
height = width*(3.0/4.0),
//release the handle to the device context

ReleaseDC(hWnd, tempDC);

run_flag = 1;
//cause appropriate sections of the screen to be repainted
_rect.top = (int)left_rect.top*height/480.0);
temp_rect.bottom = (int)(left_rect.bottom*height/480.0);
)_rectleft = (int)(left_rect.left*width/640.0);
_rect.right ‘= (int)(left_rect.right*width/640.0);
InvalidateRect(hWnd, &temp_rect, TRUE),

temp_rect.top = (int)(right_rect.top*height/480.0);

167

PRt

X A

T SR




Bl

oo AP+ -'1

_rect.bottom = (int)(right_rect.bottom*height/480.0),
temp_rect.left = (int)(right_rect.left*width/640.0);

® ogye

rectright = (int)right_rect right*width/640.0); >
InvalidateRecihWnd, &temp_rect, TRUE);
unlink("vimle.dne");
} »

}

case WM_DESTROY :
{

//this case handles requests to exit the program made by methods other than
// the main menu

//delete the temporary files
iftaccess(“input.dat”, 0) = 0) unlink(“input.dat");
if{access("output.dat®, 0) == 0) unlink("output.dat");

//remove the timer and request that the program be terminated by the »
® // Windows environment

KillTimer(hWnd,ID_TIMER),
PostQuitMessage(0);
return 0;
}
}

return DefWindowProc (hWnd, message, wParam, [Param);
}

The MainWndProc for VLMLE has a function declaration identical to that of VLL. Like
VLL, it also consists of a switch that handles four cases and passes messages not handled
by the switch to the default window procedure. The WM_COMMAND case and the
WM_PAINT case are identical to those of VLL.

A WM_CREATE case is not included in VLMLE as it was in VLL. In VLL the

case was used to initialize global variables containing data regarding the horizontal and

168




A

T vTe™

vertical dimensions of the monitor display area. In VLMLE these calculations are
performed in the output functions, paint_data box and paint_graphs and locally in the
cases which cause only portions of the monitor display to be redrawn. The advantage of
performing the calculations in the output functions is that the output functions can be
written to be independent of the output device. This means that the paint_data_box and
paint_graphs functions write output both to the monitor and to the printer and no
additional output functions are required. The disadvantage, which is extremely minor, is
that the calculations must be repeated relatively frequently.

The VLMLE MainWndProc has a case, the WM_TIMER case, that is not included
in the VLL function. The WM_TIMER case responds to WM_TIMER messages
generated by the timer that is created in the WinMain function. Every tenth of a second, a
WM_TIMER message is posted in the application message queue. In response to the
messages, the access function is used to check for the existence of the vimle.dne file. The
vimie.dne file is the dummy file that the VLMLE FORTRAN executable writes
immediately prior to termination. If the file is found to exist, local variables are declared
for the purpose of determining the size of the monitor display area. The size of the
monitor display area is then calculated. The run flag is then set to indicate that the current
set of variable data has been run and output created.

case WM_TIMER :
{

/Rthis case is executed each timer interval. it looks for the file that
// indicates the fortran executable is ierminating and then repaints the
// screes and sets the run flag

if{access("vimle.dne®, 0) == 0) {

RECT temp_rect; /Remporary rectangle structure
HDC tempDC; //Mandle to a temporary device
/] context
169

e
Iy

e

- AP P T G




~—

o

_—

flost  width, //scale factors for casuring the
height; // graphical output is scaled to
// & 640 by 480 window

//get a handle 10 the screen device context
tempDC = GetDC(hWnd),

//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats

width = (float)GetDeviceCaps (tempDC, HORZRES),
height = (float)GetDeviceCaps (tempDC, VERTRES);

//since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that aspect ratio

if{(width/height)>(4.0/3.0))
width = height*(4.0/3.0);
else

height = width*(3.0/4.0);
//release the handle to the device context
ReleaseDC(hWnd, tempDC);

rnn_flag=1;

//cause appropriate sections of the screen to be repainted
temp_rect.top = (int)(left_rect.top*height/480.0);
temp_rect.bottom = (int)(left_rect. bottom*height/480.0);

_rectleft = (int)(lef_rect.lefi*width/640.0);
temp_rect.right = (int)(lef_rect.right*width/640.0);
InvalidateRect(hWnd, &temp_rect, TRUE),

_rect.top = (int)(right_rect.top*height/480.0);
temp_rectbottom = (int)(right_rect.bottom*height/480.0);
temp_tectleft = (int)(right_rect.left*width/640.0);
temp_rect.right = (int)(right_rect.right*width/640.0);
InvalidaieRect(thWnd, &temp_rect, TRUE);

ualink("vimle.dne®);

170




The case then causes the area of the monitor exclusive of the Current Variable Data area
to be erased and then repainted by calling the InvalidateRect function and specifying the
appropriate rectangles. For this purpose the global rectangle structure variables left_rect
and right_rect are scaled so that monitors with other than a 640 by 480 display area will be
handled properly. The reason for not invalidating and redrawing the entire screen is to
prevent screen flicker in the Current Variable Data area. The vimle.dne file is then deleted
using the unlink function and the case is terminated by returning a value of zero to indicate
that the message was handled by the function.

The WM_DESTROY case is functionally identical to its VLL counterpart with the
exception of the addition of a KillTimer function call.

KillTimer(hWnd,ID_TIMER);
The KillTimer function receives a handle to the window associated with the timer to be
terminated, and the identifier of the timer and removes the timer. This is done due to the
limited number of timers available in Windows™ so that the timer may be assigned to
other applications.

B.1.3 A comparison of the VLL and VLMLE WMCommand_Handler functions.

The WMCommand_Handler function for VLMLE is very similar to the VLL
WMCommand_Handler function in terms of functionality provided as well as structure. It
is shown below in a series of segments, with a narrative discussion of the code
interspersed throughout the segments.

The function consists mainly of a switch that handles requests made by the user
with the main menu. At the start of the function a declaration of a pointer to a dialog
procedure, digProc, is made. The pointer is used in three of the switch cases to process
requests for interaction with dialog boxes.

void WMCommand_Handler(HWND hWnd, int id, HWND hwndCtl, UINT codeNotify)

17




TP ——

s s

DLGPROC digProc; /fpointer to a dialog procedure

switch (id)

{

The first case handled by the switch is the IDM_RUN case. This case responds to
the main menu FilejRun selection. The case first calculates the screen display area size in
the same way used by the WM_TIMER case in section B.1.2.

case IDM_RUN : {
RECT temp_rect; /hemporary rectangle structure
HDC tempDC; //handle to a temporary device
1/ context
float  width, [/scale factors for ensuring the
height; // graphical output is scaled to
// 2 640 by 480 window
//get a handle 1o the screen device context
tempDC = GetDC(hWnd);
//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats

width = (float)GetDeviceCaps (tempDC, HORZRES);

height = (float)GetDeviceCaps (tempDC, VERTRES),
//since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that aspect ratio

-n

if{(width/height)>(4.0/3.0))
width = height*(4.0/3.0);
else
height = width*(3.0/4.0);

//release the handie to the device context
ReleaseDC(hWad, tempDC);

The case then clears the run flag in order to indicate that the current variable data
has not yet been processed by the FORTRAN executable, and then clears the portion of
the screen external to the Current Variable Data area. After this is accomplished, the

172

.'*i




input data file, input.dat, that will be read by the FORTRAN executable is written. The
number of panels to be used, the ideal lift coefficient, the angle of attack relative to the
ideal angle of attack, and the thickness to chord ratio are included in the file.

/AL the user selects "Run®, write the input.dat file and run the

/! vimle fortran program

//clear the run flag and cause the screen, other than the data box, to
// be repainted

run_flag = 0;
{/cause appropriate sections of the screen to be repainted

temp rect.top = (int)(left_rect.top®height/480.0);
)_rect.bottom = (int)(left_rect.bottom*height/480.0);

temp_rect.left = (int)(left_rect left*wikith/640.0);

temp_rect.right = (int)(left_rect. right*width/640.0);

InvalidateRect(hWnd, &temp_rect, TRUE);

temp_rect.top = (int)(right_rect.top®*height/480.0);
_rect.bottom = (int)(right_rect.bottom*height/480.0);
) rectleft = (int)Xright_rect.left*width/640.0);

temp_rect.right = (int)(right_rect. right*width/640.0);

InvalidateRect(thWnd, &temp_rect, TRUE),

InvalidatcRect(hWnd, &right_rect, TRUE);
InvalidateRect(hWnd, &left_rect, TRUE);

//open the input.dat file and write the data used by the fortran executable
in =fopen("INPUT.DAT", "w");
fprintf(in,"%d \n",NUMBER_PANELS);
fprintf{in,"%f \n" ideal_lift_coefficient);
fprintfin,"%f \n" delta_alpha),
fprintf{in,"%f \n" thickness_chord_ratio);
fclose (in);

The FORTRAN executable is then run by a call to the WinExec function. The
WinExec function receives a pointer to the command line of the program to be run and the

173




window state in which the program will be displayed. In this case, a Windows™ Program
Information File (.pif) which names the executable and describes how it is to be run is
called by the WinExec function. This causes the FORTRAN program to be run in an
iconified DOS window. The case is then terminated and execution of the FORTRAN
executable continues in parallel with the Windows™ program.
//run the fortran executable in an inconified DOS window

WinExec("newvimle pif”, SW_SHOWMINIMIZED);

break;,

The IDM_PRINT case is virtually identical to the VLL IDM_PRINT case, which
is described in detail in section A.3.
case IDM_PRINT : {
/hthis case calls the print dialog box
PRINTDLG pd; Ifprint dialog structure
DOCINFO di; //document information structure
int j; //page counter

/fif a print request is made using the main menu and the case has not been run,
// print a warning and deny the request

if (lrun_flag)

{
MessageBeep(MB_ICONEXCLAMATION),

MessageBox(hWnd, “Must run program prior to printing.”,
"WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL);

break;
}
//otherwise, process the request

//set all structure members to zero.

memset(&pd, 0, sizeof(PRINTDLG));

174

.'i
.'




di.chSize = 5izeof{DOCINFO); §
di.lpszDocName = *“VLMLE";
di.}pszOutput = NULL: g
/finitialize the necessary PRINTDLG structure members. ;
pd.1StructSize = sizeof{lPRINTDLG);
pd.hwndOwner = hWnd;
pd.Flags = PD_RETURNDCIPD_HIDEPRINTTOFILE{PD_NOSELECTION;
pd.aFromPage = 1; ¥
pd.nToPage = 1; K
pd.aMinPage = I; g;
pd.nMaxPage = 1 ¥
¢
if (PrintDig(&pd) != 0) { &
StartDoc(pd. hDC, &di); !
for(j=0; j<pd.nCopies; j++){ .
StartPage(pd.hDC),
paint_data_box(pd.hDC );
4
paint_graphs(pd.bDC); ’
EndPage(pd.hDC); }
EndDoc(pd.hDC), Qv
DeleteDC(pd.hDC); ’
if (pd.hDevMode |= NULL) 2
GlobalFree(pd. hDevMode);
if (pd.hDevNames 1= NULL)
GlobalFree(pd. hDevNames), é
) M ::
4
’ /
i
. The next case handles requests for the Geometry dialog box. As in the VLL ¢
WMCommandHandler function, the MakeProclnstance, DialogBox, and FreeProcInstance §
4
b
175 !
b
&




functions are used to call and handle the dialog box. After the dialog box is terminated,
‘ the number of panels indicated by the user is tested. If the number falls outside the range
of five to 100, a warning message is printed and the dialog session is repeated by using the
SendMessage function to simulate a main menu request for the Geometry dialog box. The
‘ screen is then caused to be repainted using the InvalidateRect function, Since the run flag
is cleared in the Geometry dialog procedure, this causes the Current Variable Data to be
updated to reflect the new input data and the rest of the screen to be cleared.

case [IDM_GEOMETRY . {

/Rhis case calls the geometry dialog box
. digProc = (DLGPROC)MakeProcInstance((FARPROC)DigProc, »
ghinstance);
DialogBox(ghlnstance, "GEOMETRY", hWnd, d!gProc);
FreeProcInstance{(FARPROC)dIgProc);
. > ©

/fif the number of elements input by the user is outside the allowable,
/I print a wamning, cause the dialog to be reinitiated

ifNUMBER_PANELS>100[NUMBER_PANELS<5) {

. b’
MessageBox(hWnd, “Number of Panels must be between § and 100", f
"WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL); .

SendMessage(hWnd, WM_COMMAND,IDM_GEOMETRY,MAKELONG(0,0));

}
‘ //otherwise, cause the screen to be repainted and terminate the case ’
InvalidateRect(hWnd, NULL, TRUE),
break;
e 3 [ )

The IDM_PARAMETERS case handles main menu requests for the Parameters
¢ dialog box. It calls the dialog box procedure and then causes the screen to be repainted »
with the same results as the IDM_GEOMETRY case.

176




|
q case IDM_PARAMETERS : {
/Athis case calls the goometry dialog box
digProc = (DLGPROC)MakeProclnstance((FARPROC)NextDigPrac,
ghinstance);
# DialogBox(ghinstance, "PARAMETERS", hWnd, digProc);
FreeProcinstance((FARPROC)dIgProc),
InvalidateRect(hWnd, NULL, TRUE);
‘ b
}
o The IDM_EXIT case deletes the temporary data files, kills the timer, and requests ’
that the Windows™ environment terminate the program. The IDM_ABOUT case and the
help feature cases work in the same way as their counterparts in the VLL
d WMCommand_Handler function. i” ¢
’* case IDM_EXIT : { ‘
* /hhis case deletes the temporary files and terminates the program ‘ ~
.1 if{access("input.dat", 0) == 0) unlink(“input.dat"); '7 '
iffaccess(output.dat", 0) == 0) unlink(“output.dat”),
/iremove the timer and request that the program be terminated by the
Py // Windows environment )
KillTimer(aWnd,ID_TIMERY); *
. b -
case IDM_ABOUT : { 7
. digProc = (DLGPROC)MakeProcinstance((FARPROC)ABOUTDIgProc, %

N 177

gv}
i
Y

T S i e g A3 i b




DialogBox(ghinstance, "ABOUT", hWnd, digProc);
FreeProcinstance((FARPROC)dIgProc);
break;

}
/ithe next several cases respoud to the help section of the main menu

case IDM_HELPGENERAL :

{ MessageBox(hWnd, “The 2-D Vortex/source Lattice Program \
applics a vortex lattice method with Lighthill correction. It calculates\
and displays pressure coefficient on the upper and lower surfaces of a \
NACA 66 3=0.8 mean line foil with NACA 66 (Mod) thickness form.\n\n\
The user selects angle of attack relative to ideal angle of attack and \
ideal lift coefficient.”,

*HELP*, MB_ICONINFORMATION | MB_OK );
break;

}

case IDM_HELPRUN :

{ MessageBox(hWnd, “When ‘File[Run' is sclected from the main \
menu, the program uses the Current Variable Data to calculate and display \
pressure coefficient on the upper and lower surfaces of the foil. \n\n\

The total lift coefficient is also calculated and displayed.\n\n\
This selection also causes a tecplot file, ‘vimle.tec', to be written \
to the directory where the program is resident.”,
*HELP", MB_ICONINFORMATION | MB_OK );
break;

case IDM_HELPPRINT :

{ MessageBox(hWnd, "When File[Print' is selected from the main \
menu, the program invokes standard Windows Print and Print Setup Dialog \
boxes to allow the user to print the data that appears on the screen.”,

*HELP", MB_ICONINFORMATION | MB_OK );
break;
~~
case IDM_HELPEXIT :

{ MessageBox(hWnd, “When ‘File[Exit' is selected from the main \
menu, the program is terminated. ",

*HELP*, MB_ICONINFORMATION | MB_OK );
break;,

case IDM_HELPELEMENTS :
{ MessageBox(hWnd, *When 'Options|Geometry' is selected from the main \
menu, the user may select a number of panels to use.\n\n\
The number of panels must be between 5 and 100, inclusive. The default value \
for the number of panels is 40.",
*HELP", MB_ICONINFORMATION | MB_OK );
break;

178




case [IDM_HELPTHICKCHORD :
{ MessageBox(hWnd, "When 'Options|Geometry' is selected from the main \
menu, the user may select a value for the thickness to chord ratio.\n\n",
*HELP*, MB_ICONINFORMATION | MB_OK )
break;
}

case IDM_HELPPARAMETERS :

{ MessageBox(hWnd, “When ‘Options{Parameters’ is selected from the \
main menu, the user may select values for ideal lift coefficient and the \
angle of attack relative to the ideal angle of attack.\n\n",

*HELP", MB_ICONINFORMATION | MB_OK );
break; '

179




APPENDIX B.2

The VLMLE dialog and output functions.

180




U‘

, B.2 The VLMLE dialog and output functions.
‘ The dialog functions that initialize and handle input for the VLMLE dialog boxes
@ are completely analogous to the VLL dialog functions described in section A.4. A
complete listing of the VLMLE functions may be found in section B 4.

‘ The paint_data_box function, shown below, fulfills the same roles as the VLL
paint_data_box and print_data_box functions. This is made possible by calculating the
scale factors for the width and height of the display internal to the function. The other

‘ significant difference between this function and the VLL functions is in the use of fonts.
The VLL functions select the device default font into the device context and use it to draw
the text output. VLMLE uses the system font.

' v{oid paint_data_box(HDC PaintDC)

,‘declarevaliablatlmaredeﬁnedinthevlmle.cﬁlcandthat ) *
@ * will be used in this function ‘ / .
extern int NUMBER_PANELS;

P extern float  delta_alpha, ideal_lift_coefficient, thickness_chord_ratio;

' ,' Variable declarations - - ) , *

¢ char  buffer{120]; //buffer for character output

int length; /Nength of character output
float  width, | liscale factors for ensuring the
height; /I graphical output is scaled to

. // a 640 by 480 window
//determine the width of the display in pixels and the height of the display
/1 in raster lines and cast them as floats

width = (float)GetDeviceCaps (PaintDC, HORZRES),
¢ height = (float)GetDeviceCaps (PaintDC, VERTRES),
{/since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that aspect ratio
P 181
@ _e__o ‘e e e o ° ®



if{(width/height)>(4.0/3.0))
width = height*(4.0/3.0);
clse

beight = widvi. -(3.0/4.0);
//enclose the current variable data box in a pair of rectangles

Rectangle(PaintDC, (int)( 1 *width/640.0), (int)(20*height/480.0),
(int)(205*width/640.0),(int)(45*height/480.0));

Rectangle(PaintDC, (int)(1.0*width/640.0),(int)(45*height/480.0),
(int)}(205*width/640.0),(int)(290*height/480.0));

/Nabel the box
length = sprintfibuffer, "CURRENT VARIABLE DATA"),
TextOut(PaintDC, (int)(6*width/640.0) ,
(int)(25*height/480.0),
buffer, length);
length = sprintf(buffer, *Thickness form:");
TextOut(PaintDC, (int)(10*width/640.0),
(int)(50*height/480.0),
buffer, length);
length = sprintf{buffer, "NACA-66(Mod)");
TextOut(PaintDC,(int)(25*width/640.0),

(int)(70*height/480.0),
buffer, length);

length = sprintf{buffer, "Camber:");
TextOut(PaintDC,(int)(10*width/640.0),
(int)(90*height/480.0),
buffer, length);
length = sprintfbuffer, “"NACA a=0.8");
TextOut(PaintDC,(int)(25*width/640.0),
(int)(110*height/480.0),
buffer, length);
length = sprintf{buffer, *Number of Panels:");
TextOut(PaintDC,(int)(10*width/640.0),
(int)(130*height/480.0),
buffer, length);

length = sprintf{buffer, *%d",NUMBER_PANELS),

182



_—; —

TextOut(PaintDC, (int)(25 *width/640.0),
(int)(150*height/480.0),
t buffer, length),
length = sprintfibuffer, "Ideal Lift Coeff:");

TextOut(PaintDC, (int)( 10*width/640.0),
(int)(170*height/480.0),
‘ buffer, length);

leagth = sprintf(buffier, *%3.3f",ideal_lift_coefficient);
TextOut(PaintDC, (int)(25*width/640.0),
(int)(190*height/480.0),
‘ buffer, length);
length = sprintf{buffer, “Alpha-Alpha(ideal):"),
TextOut(PaintDC,(int)(10*width/640.0),
(intX(210*height/480.0),
P buffer, length); ’

length = sprintfibuffer, "%5.3f"delta_alpha);
TextOut(PaintDC,(int)(25*width/640.0),
(int)}(230*height/480.0),
o ] buffer, length); )

fength = sprintRbuffer, "Thick/Chord Ratio:");

ot

2273 v PR P R T Y

B R

TextOut(PaintDC,(int)(10*width/640.0),
(int)(250*height/480.0),
¢ buffer, length); ]
' length = sprintfibuffer, "%S5.4f" thickness_chord_ratio);
TextOut(PaintDC, (int)(25*width/640.0),

(int)(270*height/480.0),
¢ buffer, length); )

The paint_graphs function in VLMLE, like the paint_data_box function, fulfills the
¢ same roles as its VLL counterpart functions. This is accomplished in the same way as it is )
in the paint_data_box function. The VLMLE paint_graphs function also makes use of the
system font rather than creating additional fonts. A complete listing of the paint_graphs
¢ function is contained in section B.4. ;

183




¢ "
.’
e ’
"y »
] [ ]
) [ ]
APPENDIX B.3
[ e [ ]
® L
-n
® : [
o The VLMLE FORTRAN program. »
) »
184




B3 The VLMLE FORTRAN program.

The Windows™ version of VLMLE relies upon a modified version of the original
FORTRAN VLMLE program to perform the required hydrodynamic calculations. This is
done in favor of converting the FORTRAN code to the C programming language.
Although the conversion would be relatively simple in the case of VLMLE, this program is
a proof of concept project that lays the groundwork for the use of more complicated
programs, such as PLL, as stand alone FORTRAN executables. The modified version of
VLMLE is shown below. The modifications appear in bold type.

PROGRAM VLMLE

2-D Vortex/source lattice program with Lighthill's leading-edge
correction. Combines NACA-66(Mod) thickness form with NACA a=0.8
mean line at given angle of attack (measured relative to the

ideal angle of attack). The vortex lattice part of the computation

is identical to VLM2D.
Written by: Justin E. Kerwin for 13.04 April 17, 1995

Modified by David R. Beckett 4/27/95

~to accomplish input by data file, input.dat

-removed screea output

-added statements to write output data to a data file, output.dat

s Yo oo Noe e Ko Ko Ne e Ko Ko Xo)

PARAMETER( MSD=100, MSD2=MSD+2, MCUB=4*(MSD-1), NCL=1,NCR=1 )
PARAMETER( PI=3.141592653589793E00, HALF=0.5E00, RAD=P1/180.0 )
PARAMETER( ZERO=0.0E00, ONE=1.0E00, TWO=2.0E00, ESL=0.0, ESR=0.0 )
DIMENSION XV(MSD), XC(MSD),A(MSD MSD),DXMSD),B(MSD), GAMMA(MSD),
i WKAREAMSD),IPIVOT(MSD),G(MSD),GEXACT(MSD),F(MSD),
* YTMMSD2),UT(MSD),CPUMSD2),CPL(MSD2),CUBIC(MCUB)

C

C-—Opea the input data file as unit 2
OPEN(2,FILE='INPUT.DAT' STATUS='UNKNOWN',FORM='FORMATTED")

C

C——Compute vortex and control point positions and weight functions—
C

C——Commesnt out the request for the number of panels and associated read statement
gso WRITE(*,'("’ Eater sumber of panels (Max:" J4,")... ",5)') MSD

C READ(**MC

g——Add a READ statemest that reads the aumber of panels from the input.dat file
€ READ(2,*) MC

185



_—————

C

C——Comment sut the test loop that checks the validity of the number of panels since
. C this is ensured in the C code

C

C IFMCLT.S.ORMC.GT.MSD) GO TO %

DELC=PI/FLOAT(MC)

DO 100 N=1 MC
XVINHALF*(ONE-COS((N-HALF)*DELC))
XCMNYy=HALF*(ONE-COS(N*DELC))

‘ DXN)=PI*SQRT(XV(N)*(ONE-XV(N))/FLOAT(MC)
100 CONTINUE

@ .

C—Compute influence coefficient matrix ANN,M) and invert ——
TOP=ONE/(TWO*PI)
DO 110 N=1 MC
¢ DO 120 M=1,MC
ANM=TOP/(XV(M)-XC(N))

120 CONTINUE

110 CONTINUE
CALL FACTOR(A,IPIVOT, WKAREA MC,MSD,IERR)

¢ C——Solve for GAMMA(X) FOR NACA A=.8 MEAN LINE
C .
C——Comment out the requests for the ideal lift coefficient and angle of attack and associated read
statements and read the values from the input.datfile

WRITE(*,'(A,3)") ' Eater ideal lift coefficient.... '
READ(*,*) CL
READ(2,*) CL
WRITE(*,'(A,S)") ' Eater Alpha-Alpha(ideal) (deg)..... '
READ(*,*) ALPHA
READ(2,*) ALPHA
CALL AEIGHT(MC,XV,XC,B.F,GEXACT)
¢ DO 130 N=1,MC
B(N)=CL*B(N)-ALPHA*RAD
FN)=CL*F(N)
130 CONTINUE
CALL SUBST(A,B,GAMMA,IPIVOT MC,MSD)

®
-~
aa nann

¢ C——Sum circulation over chord and convert to vortex sheet strength—
SUMG=ZERO
DO 140 N=1MC .
SUMG=SUMG+GAMMA(®N)
GIN=GAMMA(NYDX(N)
140 CONTINUE
¢ CLNUM=TWO*SUMG
C
C~—Comment out the statement that writes the computed total lift coefficient to the screen
C
C WRITE(*,'("" Computed total lift coefficient=",F8.4)") CLNUM
C
¢ C——open the output.dat file as unit 3, write the computed total lift coefficient and number of panels
C  twithefile
C

186




——

OPENQG,FILE~'OUTPUT.DAT' STATUS=UNKNOWN' FORM="FORMATTED")
WRITEG,'(F10.5)") CLNUM
WRITEG,'(IS)") MC

C--—Velocity due to thickness-
C
C——Commesnt out :he request for thickuess/chord ratio and asseciated read statement and read the
C  value from the input.dat file
C
C WRITE(%,'(A,3)") ' Eater thickness/chord ratio... '
C READ(*,*) TOC
READ(2,*) TOC
CALL NACA66(MC,TOC.RLE XC,YT(2))
YT(1)=ZERO
DO 200 N=1 MC
UT(N)=ZERO
DO 210 M=1 MC :
UTN=UT(N+TOP*(YT(M+1)-YT(M)V(XC(N)-XV(M))
210 CONTINUE :
200 CONTINUE

C——Interpolate thickness velocity 10 vortex points-——e——eeve—————e-e
CALL UGLYDK(MC,NCL,NCR,XC,UT ESL,ESR,CUBIC)
CALL EVALDKMCMC,XC,XV,UT,CUBIC)

C—-Compute surface velocities:First get value at leading edge-————
QU=ALPHA*RAD*SQRT(TWO/RLE)
CPU(1=QU**2-ONE
CPL(1)=CPU(1)

C-———Next get remaining values over the chord
DO 300 N=1 MC

FLH=SQRT(XV(N)/(XV(N)+*HALF*RLE))
QU=(ONE+UT(N+HALF*G(N))*FLH
CPUN+1)=QU**2-ONE
QL=(ONE+UTN)-HALF*G(N))*FLH
CPL(N+1)=QL**2-ONE

300 CONTINUE

C——-Output the results in TECPLOT format
OPEN(],FILE="VLMLE.TEC',STATUS='UNKNOWN',FORM=FORMATTED")
WRITE(1,'(A)") ' ZONE '

WRITE(1,'(2F10.5)") ZERO,CPU(1)
WRITE(1,'(2F10.5)") (XV(N),CPUN+1),N=1 MC)
WRITE(1,'(A)) ' ZONE '

WRITE(1,'(2F10.5)) ZERO,CPL(1)
WRITE(1,'(2F10.5)") (XV(N),CPL(N+1),N=1 MC)

C D

C——write the pressure coefficieat to the output.dat file

C
WRITEQ,'(3F10.5)") ZERO,CPU(1),CPL(1)

c WRITEQ3,'(3F10.5)") (XV(N),CPU(N-+1),CPL(N+1),N=1,MC)

C——close the input.dat and output.dat files

187

)
‘i;
%;

*



"
"
c {
CLOSEQ)
CLOSEQ3) »
C
C——write a dummy file, vimie. dae, indicating that the FORTRAN executable has completed the
C  input/ontput functions and is ready te terminate execution
C
OPEN,FILE='"VLMLE.DNE' STATUS='UNKNOWN',FORM="FORMATTED")
CLOSE@4) : »
STOP
END
The original VLMLE program was designed for the traditional terminal interactive »
input mode. The modified version substitutes file input for the terminal input. While the
original version writes the computed total lift coefficient to the screen and generates a data
file formatted for use with a graphics program, the modified version writes the output data »
to a file formatted for use by the Windows™ program. The modified version also retains
the code that produces the formatted graphics file.
The VLMLE FOR program calls subroutines that solve a system of linear »
equations, calculate the offsets of a NSRDC modified NACA 66 with a parabolic tail and
a leading edge radius, and evaluate the camber, slope, and vortex sheet strength of an
NACA a=0.8 mean line. These subroutines were not modified for the purpose of this >’
thesis and are therefore not included in this appendix.
»
’
»

188




ML

G I 11 SR T 20 S N T I B ACKRITNIAS 5

APPENDIX B.4
VLMLE program listings.
189



B4 VLMLE program listings.
The VLMLE Windows™ application includes ten files. Listings for these files are

included with this document as Ap~>ndix B.4 on a 3.5 inch, IBM PC formatted, double
sided, high density floppy disk. The files are saved in an ASCII text format which can be
read using a DOS text editor or any word processor capable of reading DOS text files.
The complete files of this and the other programs in this thesis are not included in the

written text of the thesis in the interest of limiting the size of the document. This page is
included with the listings in a file named README . TXT.
The files included on the disk are described below.

VLMLE.C -contains the WinMain, MainWndProc, WMCommand_Handler,
and dialog box functions.

PAINTGRA.C -contains the paint_graphs function.

PAINTBOX.C -contains the paint_data_box function.

VLMLE.DEF -the module definition file.

VLMLE.RC -contains definitions of the resources used in the VLMLE program.

HEADER H -contaﬁs the #define and #include statements for the VLMLE
progr;m.

VLMLE.H -contains the definitions of the Windows™ identifiers.

README.TXT -contains a copy of this page.

The following files are not readable text files. ~-

VLMLE.ICO -describes the icon used to represent the program in the
Windows™ Program Manager.

VLMLE.PRJ -the project file read by the compiler.

NEWVLMLEPIF -aprogram information file used by the Windows™ environment

to control how the FORTRAN executable is run.

190

"




. - -y - - ‘-
, . - - - — .

APPENDIX C
PLL Program Code.
191




APPENDIX C.1

The PLL WinMain, FrameWndProc, and WMCommand_Handler functions.

192




OB A s

R OLA.

C.1 The PLL WinMain, FrameWadProc, and WMCommand_Handler functions.
‘ The PLL WinMain, FrameWndProc, and WMCommand_Handler functions are

°
. @
o
®

similar to the WinMain, MainWndProc, and WMCommand_Handler functions in the
VLMLE Windows™ application program. They are different, however, due to the 5
‘ greater complexity of PLL and the application of the Multiple Document Interface. The ¢
discussion of these functions will focus on the new concepts necessary to understand the f
v
Windows™ PLL MDI application. %
‘ ’
C.1.1 The PLL Winmain function.
The WinMain function is the main entry point for an for a MDI application, just as
(] it is for non-MDI applications. The functions of the WinMain function for PLL are to .
register window classes for the frame window and the child windows, to create and
display the frame and child windows, to initialize a timer for the frame window, to
¢ determine the size of the screen display area, and to initiate the main message loop. The ‘ o
WinMain function for PLL is shown below with discussion interspersed through the code.
int PASCAL WinMain(HINSTANCE hinstance, HINSTANCE hPrevinstance,
LPSTR lpCmdParam, int n"CmdShow) i
The WinMain function is declared in the same way as the functions described in Appendix
A and Appendix B. Additional character strings are declared here for the purpose of 5
‘ b
supplying different names for the four different child windows. N
char  ProgName[] = "MIT - Propeller Lifting Line Program"; ,
char  BladeViewerName[) = "Blade Viewer"; Ly
char  WakeViewerNamef) = "Wake Viewer", 9
¢ char  OutputViewerName[] = "Output Viewer"; '
char  PlotViewerName[] = "Plot Viewer”; ,}
3
MDICREATESTRUCT nxs; &ﬂ
¢ The MDICREATESTRUCT is declared as follows:

lr !
i
L
i
X

e e e o n e mimae s s s et er

193




typedef struct tagMDICREATESTRUCT {
LPCSTR s2Class;
) LPCSTR xTitle;
HINSTANCE hOwner,
i x
int vy,
it cx;
it oy
) DWORD style; »
LPARAM [Param;
} MDICREATESTRUCT;

The MDICREATESTRUCT structure is used to provide information about the class, title,
owner, location, and size of a MDI child window.

] [ ]
ghinstance = hinstance;
if (!hPrevInstance)
{

) WNDCLASS wndclass; »

The next several lines of code initialize the WNDCLASS structure with information about
the frame window class and each of the child window classes, and register each of the
’ classes using the RegisterClass function. This is done in the same way as described in [ ®
Appendix A, except that the child windows are declared with the window class style
CS_NOCLOSE. This prevents the child windows from being closed using the window
» system menu. .}‘-7‘

Ilsuwe@informaﬁonfordwﬁamwindowclas

wndclass.lpszClassName = ProgName;
wndclass. lpfnWndProc = (WNDPROC) Frame WndProc;
] wndclass.cbCIsExtra =0; »
wndclass.coWndExtra =();
wndclass. hinstance = hinstance;
wndclass.hicon = Loadlcon(hInstance,"PLL_ICON");
wndclass.hCursor = LoadCursor(NULL,IDC_ARROW);
wndclass. bbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
] wndclass. IpszMenuName = "Main_Menu"; ®
wndclass.style = CS_VREDRAW | CS_HREDRAW |CS_DBLCLKS;
//register frame class
RegisterClass(& wndclass);
] //set up class information for the blade window class ®
widclass. IpszClassName = Blade ViewerName;
194

e es . e e T rT e e g g nrp————r e e T ey




wndclass. ipfn WndProc = (WNDPROC) MDIChildBladeWndProc;

wadclass.cbCisExtra = (;
wadclass.cbWndExtra = gi 3
wadclass. hicon = LoadIcon(hinstance, "BLADE_ICON");
'wadclass hCursor = LoadCursor(NULL,IDC_ARROW),
wadclass hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
wadclass. lpszMenuName =NULL;
wndciass style CS_VREDRAW | CS_HREDRAW [CS_DBLCLKS |[CS_NOCLOSE;
' //register MD] blade child class
RegisterClass(& wndclass); :
//set up class information for the wake window class ;
) wadclass. ipszClassName = Wake ViewerName; [
wadclass. IpfaWndProc = (WNDPROC) MDIChildWakeWndProc; '
wndclass.cbCIsExtra =0;
wndclass.coWndExtra = sizeof{LOCALHANDLE);
wadclass. hicon = Loadlcon(hInstance,"WAKE_ICON");
wnadclass. hCursor = LoadCursor(NULL,IDC_ARROW);
) wndclass. hbrBackground = (HBRUSH) (COLOR_WINDOW + 1), )
wadclass. lpszMenuName =NULL;
wndclass.style =CS_VREDRAW | CS_HREDRAW |CS_DBLCLKS|CS_NOCLOSE;
{Iregister MDI wake child class
RegisterClass(& wndclass); ;
) > o
//set up class information for the output window class
wndclass. IpszClassName = QutputViewerName;
wndclass.lpfaWndProc = (WNDPROC) MDIChildOutputWndProc;
) wndclass.cbClIsExtra =0, b
wndclass.coWndExtra = sizeoffLOCALHANDLE); i
wndclass.hIcon = LoadIcon(hInstance,"OUTPUT_ICON™); * 't
wndclass. hCursor = LoadCursor{NULL,IDC_ARROW); :
wndclass. hbrBackground = (HBRUSH) (COLOR_WINDOW + 1); ¥
wndclass.lpszMenuName =NULL; :
) wnadclass.style = CS_VREDRAW | CS_HREDRAW |CS_DBLCLKS|CS_NOCLOSE; .
{/register MDI output window class ‘
RegisterClass(&wndclass); L
//setup class information for the plot viewer class i
' wndclass IpszClassName = PlotViewerName; '
wndclass. IpfaWndProc = (WNDPROC) MDIChildPlotWndProc; b
wadclass.cbClsExtra =0; 1%
wndclass.coWndExtra = 3izeof{LOCALHANDLE),
wndclass. hicon = LoadIcon(hInstance,"PLOT_ICON"); i
) wndclass. hCursor = LoadCursor(NULL,IDC_ARROW); [
wixiclass hbrBackground = (HBRUSH) (COLOR_WINDOW + 1), i
wadclass. IpszMenuName = NULL; o
wadclass.style = CS_VREDRAWICS_HREDRAWICS_DBLCLKS|CS_NOCLOSE; P

: 195 '




{fregister MDI plot viewer window class ‘ ,
, RegisterClass(& wndclass); »
After the classes are registered, the frame window is created using the CreateWindow
command. A timer is set such that a _TIMER message is sent to the window »
procedure for the frame window (FrameWndProc) every 500 milliseconds. This timer is
used to periodically check for the termination of PLL and PBD FORTRAN executables.
//create frame window »
hFrameWnd = Create Wi
WS_OVERLAPPEDWINDOW|WS_CLIPCHILDREN,
CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
NULL, NULL, hinstance, NULL), »
//create a timer for determining how often to check for FORTRAN PLL run completion will
SetTimer(hFrameWnd,ID_TIMER,500,NULL);
//create the child windows
ifthFrameWnd && hMDIClientWnd)
{
RECT current_rect;

HDC WG,
TEXTMETRIC tm;

[ 7
N

A TEXTMETRIC structure, tm, is declared here for use in determining the size of the
screen display area in terms of the size of the text. A TEXTMETRIC structure is declared
as follows:

typedef struct tagTEXTMETRIC { /* tm */ »
int tmHeight,

196




A TEXTMETRIC structure contains information about the size and appearance of a font.
If the program is successful to this point, the frame window is displayed and each of the
child windows is created and displayed. The child windows are not created using the
CreateWindow function, but rather are created by sending a WM_MDICREATE message
along with a pointer to a properly initialized MDICREATESTRUCT structure to the
client window. The client window is the window area inside the frame window. It is
where the child windows are displayed, and it is controlled by the Windows™ operating
environment.

All four child windows are created with the MDIS_ALLCHILDSTYLES style
bits. The WS_VSCROLL style bit is specified for the Output Viewer window so that it is
created with a vertical scroll bar.

ShowWindow(hFrameWnd, nCmdShow);

Update Window(hFrame Wnd);

mcs.szTitle = BladeViewerName;
mcs.szClass = BladeViewerName;
mcs.hOwner = ghinstance;

mCs.X = CW_USEDEFAULT;,

mcs.y = CW_USEDEFAULT;
mCs.cX = CW_USEDEFAULT;,
mes.cy = CW_USEDEFAULT; .
mcs.style = MDIS_ALLCHILDSTYLES;

hBladeWnd = (HWND)SendMessage(hMDIClientWnd, WM_MDICREATE,0,
(LONGYLPMDICREATESTRUCT )& mcs);

197

P v e




ShowWindow(hBladeWnd, SW_SHOWNORMAL);

mcs.sxTitle = WakeViewerName;

mcs.s2Class = Wake ViewerName;

mcs. hMOwoer -

mes.x = CW_USEDEFAULT,

mcsy = CW_USEDEFAULT,

ICS.CX = CW_USEDEFAULT,

mcs.cy = CW_USEDEFAULT,

mcs.style = MDIS_ALLCHILDSTYLES;

hWakeWnd = (HWND)SendMessage(hMDIClientWnd, WM_MDICREATE,0,
(LONGYXLPMDICREATESTRUCT)&mcs);

ShowWindow(hWakeWnd, SW_SHOWNORMAL);

mcs.szTitle = PlotViewerName;
mcs.szClass = PlotViewerName;

mcs hOwner = ghinstance;

mes.x = CW_USEDEFAULT;

mcs.y = CW_USEDEFAULT;
mcs.cx = CW_USEDEFAULT;
mcs.cy = CW_USEDEFAULT;
mcs.style = MDIS_ALLCHILDSTYLES;

hPlotWnd = (HWND)SendMessage(hMDIClientWnd, WM_MDICREATE,0,
(LONGXLPMDICREATESTRUCT)&mcs);

ShowWindow(hPlotWnd, SW_SHOWNORMAL);

mcs.szTitle = OutputViewerName;

mcs.szClass = OutputViewerName;

mcs.hOwner = 3

mes.x = CW_USEDEFAULT;

mcs.y = CW_USEDEFAULT;

mCS.CX = CW_USEDEFAILT,

mes.cy = CW_USEDEFAULT,

mcs.style = MDIS_ALLCHILDSTYLES|WS_VSCROLL;

bOutputWand = (HWND)SendMessage(hMDIClientWnd, WM_MDICREATE,0,
(LONGXLPMDICREATESTRUCT)&mcs);

ShowWindow(hOutputWnd, SW_SHOWNORMAL);

198

'




The next six lines of code are used to determine how may lines of text fit into the
Output Viewer child window. This is done in support of thc operation of the vertical
scroll bar associated with that window. The first line gets a handle to the device context
for the window. The next line fills a TEXTMETRIC structure with information regarding
the default font for the window. The height of an individual line of text is calculated by
adding the tmHeight and tmExternalLeading values from the structure. The device
context is released using the ReleaseDC command. The GetClientRect function is then
used to fill the current_rect RECT structure with coordinates of the upper left and lower
right corners of the Output Viewer window client area. The last line calculates the
integral number of lines of text that can be displayed in the client area of the Output
Viewer window.

LineHeight = tm.tmHeight + tm.tmExternalLeading;
ReleaseDC(hOutput Wnd, hDC);

GetClientRect(hOutputWnd, &current_rect);
LinesInWindow=(int)((current_rect.bottom-current_rect.top)/LincHeight);

The main message loop for a MDI application is nearly identical to that of a non-MDI
application. The difference is the use of the TranslateMDISysAccel function. The
TranslateMDISysAccel function translates child window accelerator keystrokes and
returns a non-zero value if the function is successful. In this case, if the function is
unsuccessful the message is translated and dispatched as usual by the TranslateMessage
and DispatchMessage commands.

while (GetMessage(&msg, NULL, 0, 0))

i{ﬂl'l'nnslateMDlSysAwel(hMDlClienthd. &msg))

TranslateMessage(&msg);
DispatchMessage(&msg);

199

S
f
&

i
i
%

A

5
B
At

o

Lot

e eI,
It

e Y4 LR

AR wr&wm-zwvm
e, oD W LT st




rotura mag wParam; .
} [ ] |
C.1.2 The PLL FrameWnadProc function. @
The PLL FrameWndProc is similar to the MainWndProc functions for the VLL
and VLMLE programs. It consists of a switch that processes four different types ’ <
messages and refers unprocessed messages to a default procedure, in this the Windows™
default frame window procedure. The PLL FrameWndProc function is shown below. As
with the WinMain function above, discussion is interspersed through the code of the ’ <
FrameWndProc function.
LRESULT CALLBACK _export FrameWndProc(HWND hWnd, UINT message,
WPARAM wParam, LPARAM Param) [ ) q
{
switch(message)
{
case WM_CREATE : {
» © ¢

The first case is the WM_CREATE case. A CLIENTCREATESTRUCT
structure contair:s a handle to the menu of a MDI client window and an unsigned integer _
identifier for the first child wirdow. This case uses the GetMenu and GetSubMenu b’ ¢
functions to initialize the hWindowMenu parameter and assigns the value 1000 as the L
identifier for the first child window. The GetMenu function receives a handle to a window
and returns a handle to the menu of the specified window. The GetSubMenu function » q
receives a handle to a menu with a pop up menu and an identifier for the pop up menu and
returns a handle to the specified pop up menu. This is done here so that the names of the

child windows will be added to the Window pull down menu on the main menu. » q
CLIENTCREATESTRUCT ccs; //structure containing information

// about a Multiple Document

// Interface client window menu

// and the window's first child

/] window [ ] q
//intialize the structure

200
» (
. .._ " Lo .;i‘.;_.._‘, .‘,;; .1" .___ " : _... N . o | ‘ |




e

ccs.hWindowMenu = GetSubMenu(GetMenu(h Wnd), 3);
ccs.idFirstChild = 1000;

The WM_CREATE case then creates the client window using the CreateWindow
function, displays the window using the ShowWindow function, and retumns zero to
indicate that the message was handled by the function.

I/create the MDI client window and save a handle to the window

hMDIClientWnd = CreateWindow("MDICLIENT* ,NULL,
WS_CHILD{WS_CLIPCHILDREN|WS_VISIBLE,

0,0,0,0, hWnd, 0,
ghinstance, (LPSTR)&ccs);
/Hdisplay the window
ShowWindow(hbMDIClientWnd, SW_SHOW);
return 0;

}
The WM_COMMAND case uses the HANDLE_WM_COMMAND macro to refer menu

selections or dialog box messages to the WMCommand_Handler function.

case WM_COMMAND : {
//this case refers menu selections to the WMCommand_Handler function

return HANDLE_ WM_COMMAND(hWnd, wParam, 1Param, WMCommand_Handler);

}
case WM_TIMER : {
int J /Noop counter
FILE *in; /Ipointer to a file structure

The WM_TIMER case is processed every 500 milliseconds in response to a message sent
by the timer associated with the frame window. The case first checks for the existence of
a file written by the PLL FORTRAN executable to indicate that the FORTRAN

executable was called and completed its calculations. Ifthe file is found to exist, the case

201

R ey I TIRE NIV

i
J
]
j
7
¥
'8
,!
4
g
¥

KD AT ST

o

LA B 3wt G,
A EAp




deletes the file and looks for, reads, and deletes a series of files written by the FORTRAN
executable.
JAE the “all.doc® file exists, then the return value of access is 0 and the code in the braces is executed
if{access("all.dne”, 0) == 0) {
//delese the all.dne file and read the files written by the fortran executable
unlink("all.dne®);
//plot] and plot2.out contain the data to be plottod for components 1 & 2,
{/ glanert.coe contains the coefficients used for blade unloading if the
// loading is zero at the tip and hub, unload.dat contains the information
// used for blade unloading if the blade loading is noa-zero at the hub
// or tip, car.dat contains the data necessary for matching car, duct.cir
// contains a value for duct circulation that is used to update the
// value proposed by the program in the duct settings dialog box
//if plot].out exists, open it, read it, and then delete it and set the draw_plot_flag
if{access("plot!.out”, 0)==0) {
in = fopen("plotl.out"®, °r");
read_plot_file(in);
fclose(in);
unlink(“plotl.out”);

draw_plot_flag=1;

//repeat the process for plot2.out
if(access("plot2.out”, 0)==0) { -

in = fopen("plot2.out", "r");
read_plot_file(in);

fclose(in);

unlink("plot2.out");

202




The program looks for plot1.out and plot2.out, files containing data to be plotted on the
Plot Viewer screen for the first and sccond components respectively. After the plot files
have been read the InvalidateRect function is used to cause the Output and Plot Viewer
windows to be drawn with the output from the current PLL run.
/icanse the output and plot viewer windows to be painted

InvalidateRect(hOutput Wnd, NULL, TRUE);

InvalidateRect(hPlotWnd, NULL, TRUE),
If the absrules.out file exists, the case declares two 16-bit file handles and uses them to
append the ABS Rules calculation data in the absrule.out file to the stress calculation data
in the stress.out file. The two files are temporary data files written by the PLL FORTRAN
executable.
/Af absrules.out exists, append the data to stress.out and delete the file

if{access("absrules.out”, 0)==0) {

char  *buffer; //pointer to a character buffer
int num_bytes; /Inumber of bytes read by _lread
HFILE in, out; //pointers to files

//allocate memory for reading the files into

buffer = (char *) malloc((max_buf_sz)*sizeof (char));

After allocating memory to store the absrule.out file data, the _lopen function is used to
open the stress.out and absrule.out files. The _lopen function receives the address of the
file to open and an access code and returns a file handle. In this case the stress.out file is
opened with READ_WRITE access since data will be written to the file. The absrules.out
file is opened with READ access. The _liseek function receives a file handle, a number of
bytes to move, and a position in the file from which to move. The function moves the file
pointer to the position specified, in this case the end of the stress.out file. The _lread
function is then used to read in the data from the absrules.out file. The _lread function

203




receives a handle to a file, a buffer for receiving the data, and the length of the buffer. The
function reads the file into the buffer and returns the total number of bytes that were read
by the function. The _lwrite function is then used to append the data in the buffer to the
stress.out file by writing it at the end of the file. The _lwrite function receives a handle to
a file, a pointer to the data to be written, and the number of bytes to write. The _lclose
function is then used to close both files.

out = _lopen(“stress.out”, READ_WRITE),
_liseek(out, OL, 2);
in=_jopen(*absrules.out”, READ);
num_bytes= _lread(in, buffer, max_buf_sz),
Iwrite(out, buffer, num_bytes);

close(in);

lclose(out);

The program then reads and deletes a series of temporary data files written by the
FORTRAN executable. Some of the files are read by functions written specifically for this
application and the rest are read by opening the files with fopen function calls, reading the
formatted data with fscanf function calls, and closing the files with fclose function calls.
The glauert.coe file contains inforn.ation about blades that are unloaded using alterations
to the sine series coefficients that describe the circulation distribution. The unload.dat file
contains data for the other cases. The ear.dat file contains the expanded area ratio for
each component. The duct.cir file contains a value for duct circulation. The damp.val file

contains a damping value used during the iterative process of calculating duct circulation.

//if glavert.coe exists, open it, read it, and then delete it
if{access("glavert.coe®, 0y==0) {

204

. ’
i




in = fopen("glauert.coe®, "r");
read_glauert_file(in);
fclose(in),
unlink(*glaunert.coe”);
}
/Af unload. dat exists, open it, read it, and then delete it
' if{access(*unload. dat", 0)==0) {
in = fopen("unload.dat”, “r");

read_unicad_dat_file(in);
fclose(in);
unlink("unload dat®); '

IAf car.dat exists, open it, read it, and then delete it :
if{access("ear.dat”, 0)=0) {
in = fopen("ear.dat", “r");
/Noop through the components and read the ear data ‘
for=0,j<LDEV;j++) i
fscanf(in, "% &EAR(D);
fclose(in); :
unlink("ear.dat"); 6

IRf duct.cir exists, open it, read it, and then delete it
if{access("duct.cir”, 0y==0) {
in = fopen("duct.cis", "r");
fscanf(in, "%f" &estimated_duct_circulation);
fclose(in);
unlink("duct.cir");

A W e T R T g
R N R O s PR RV R e

I T Y

205

R el o]




}
/Aif damp.val exists, open it, read it, and then delete it
iftaccess("damp.val®, 0)y==0) {
in = fopen("damp.val®, °r");
fscanf{in,"%f" &damping),
fclose(in);
unlink(*damp.val®);

If the optim.dat exists, the program opens the file and reads the data character by
character into a local character array using the getc function. The data is then presented
to the user in a message box. The getc function receives a pointer to a file structure and

returns the next character from the stream converted into an integer value.

//check for the optim.dat file, which contains the optimization results for
1/ the optimize rpm or diameter case, print the results in a message box

// and delete the file
if{access("optim.dat",0) == 0) {
char  string[240]=""; //string for storing opt result
int nextchar=0, //integer for reading data
/I character by character
i=0; //character counter
//open the optim.dat file

in = fopen(“optim.dat", "r");

//read the string character by character until reaching end of file
nextchar = getc(in);
while(nextchar!=EOF)
stringli}=nextchar,

i+

206

"d

® olde




nextchar = getc(in); }
//pat in & terminator at the end of the string
stringi]=\0";
/iclose and delete the optim.dat file
fclose(in);
unlink("optim.dat");
//peint the results if a MessageBox
MessageBox(hWnd, string, "OPTIMIZATION RESULT",

MB_ICONINFORMATION | MB_OK |
MB_TASKMODAL);

The case then checks for the existence of a file written by the PBD FORTRAN executable
to indicate that a PBD run is complete. If the file is found to exist, the case deletes the
file, sets a flag that indicates that PBD has been run, and if there is no PLL output, adjusts
flags that control the data drawn on the Output and Plot Viewers so that the PBD data is
displayed. The case then returns a zero value to indicate that the message was handled.
I/if the "pbd.dne" file exists, delete it and check if there is pll data to
// plot, if there is not then set the plot_page to 4 so the pbd plots will
1/ be displayed on the plot viewer and set the output flag to pbdktq so the
// pbdout.ktq file will be displayed on the output viewer

if{access("pbd.dne”, 0) ==0) {

/ldelete the pbd.dne file, adjust the draw plot and output flags and set the
// pbd flag

unlink("pbd.dne");

if(1draw_piot_flag) plot_page=4;

if{access("summary.out®, 0) != 0) output_flag = pbdktq;
//set the pbd_fiag to indicate that pbd has been run

pbd_flag=1;

207

3
Frrn T iR

= ant QP e

g e e

R I ST o



retura 0,

The WM_DESTROY case handles requests made to exit the program by methods other
than the File[Exit selection on the main menu. It responds by sending a IDM_EXIT
command to the WMCommandHandler function and returning zero to indicate that the
message was handled.

case WM_DESTROY : {
/Ahis case handles requests to exit the program made by methods other than
// the main menu

SendMessage(hWad, WM_COMMAND,IDM_EXIT, MAKELONG(0,0));

return 0;

}

I/vefer messages not handle by this frame procedure to the Windows default
// frame procedure

return DefFrameProc (hWnd, hMDIClientWnd, message, wParam, [Param);

C.1.3 The PLL WMCommand_Handler function. -
The WMCommand_Handler function for PLL is very similar to the VLMLE and

VLL WMCommand_Handler functions. It is shown below in a series of segments, with a

narrative discussion of the code interspersed throughout the segments.
The function consists mainly of a switch that handles requests made by the user

void WMCommand Handler(HWND hWnd, int id, HWND hwndCtl, UINT codeNotify)
{

208




r—

switch (id)
: {
‘ case IDM_RUN _PBD : {

The IDM_RUN_PBD case uses the OPEN common dialog box. First, a series of
character strings used to initialize the dialog box and return information such as the title of
‘ the file selected by the user and the complete path of the file are initialized. A destination
file, PBDADMIN.NAM, is declared. The file returned by the dialog box is copied into
this file. The PBD FORTRAN executable is coded to use this file title as the main
. administrative file.

/ithis case handles main menu requests to run MIT-PBD

e OPENFILENAME ofn; /lopenfilename structure used with
/! GetOpeaFileName function
char  szFile[256]="0", /fname and location of the file
// to open
szFileTitle{256), //name of file to open
szFilter{}= Iffilter for list box i
o “PBD Files (*.PBD)\0* PBDV", j @
szDst[] = "PBDADMIN.NAM"; Iffile to copy selected file into

The case also declares two OFSTRUCT structures. An OFSTRUCT is used to return
information regarding a file that has been opened by a call to the LZOpenFile function. In

this instance a source and a destination structure are declared.

'.;-‘._;zm"nxv,r\z—mus (Yo P Rt
o, .

OFSTRUCT of StrSrc, //source and destination

open file
” of StrDest; /1 structures 6
HFILE hfSrcFile, //source and destination file

hiDsiFile;

e The IDM_RUN_PBD case then deletes the previously existing CURRPBD.PBD P
and PBDADMIN.NAM files. The CURRPBD.PBD file is written by PLL using the
current settings in the PBD Settings and PBD Skew/Rake Settings and the current PLL

e project and is made available to the user in the SELECT PBD ADMIN FILE dialog box.

If a B-spline input file exists for the component indicated by the pbd_component variable

209

R .




and a velocity file has been written for the current project, the write_pbd_admin_file
] function is called. This function writes the CURRPBD.PBD file.

//delete pre-existing currpbd.pbd, the pbd admin file written by PLL, and
// pbdadmin nam, the file that the selected admin file is copied into for
11 use by PBD

) unlink(*CURRPBD PBD");
unlink("PBDADMIN.NAM™),

/Af a project is currently open and blade and velocity files are available,
// write a pbd admin file (currpbd. pbd)

) if{project_flag& & (access("currpbdl.bsn®, 0) == 0)&&(pbd_component==0)&&
(access("curtpbd.vel”, 0) == 0)) write_pbdadmin_file();

if{project_flag& & (access("currpbd2.bsn”, 0) == 0)&&(pbd_component==1)&&
(access(“currpbd.vel®, 0) == 0)) write_pbdadmin_file(;

The case then initializes the OPENFILENAME structure, ofn. The initialized

variables include the size of the OPENFILENAME structure in bytes, the handle of the
. window that owns the dialog box, the address of the filter used for selecting files to ® o

display in the list box, the address of strings for receiving the file title and path and the size
of those strings, the title of the dialog box, and flags that govern the operation of the
dialog box. The OFN_FILEMUSTEXIST flag causes the dialog box to require that the
selected file must exist. The OFN_HIDEREADONLY flag hides the read only check box.
/finitialize the OPENFILENAME parameters

. memset(&ofn, 0, sizeofOPENFILENAME)); ®
ofn.1StructSize = 8izeofOPENFILENAME);
ofn. hwndOwner =hWnd;
ofn. lpstrFilter = gzFilter;
ofn.IpetrFile = szFile;
ofn.nMaxFile = gizeof(szFile); ®
] ofn. IpstsFileTitle = gzFileTitle;
ofn. IpstrTitle = "SELECT PBD ADMIN FILE";
ofn.nMaxFileTitle = sizeof(szFileTitle);
ofn.Flags = OFN_FILEMUSTEXISTIOFN_HIDEREADONLY;
o The GetOpenFileName function is then used to call the dialog box. If the dialog box »

terminates successfully, the LZOpenFile function is used to open the file returned by the

210




dialog box. The LZOpenFile function receives the address of the filename of the file to be
opened, a pointer to a OFSTRUCT, and an unsigned integer which indicates the required
action. The function opens for reading or creates and opens the file as indicated, fills the
OFSTRUCT, and returns a handle to the file. The OFSTRUCT structure contains
information including the length of the file in bytes and the path of the file.
/R the dialog is used successfully to choose a file, execute the code in the braces

if (GetOpenFileName(&ofn)) {
Ifopea the source file

bfSrcFile=  LZOpenFile(ofn.IpstrFileTitle, &ofStrSrc, OF_READY;

//create the destination file

MDstFile=  LZOpenFile(szDst, &ofStrDest, OF_CREATE);

After the source and destination files are open, the LZCopy function is used to copy the
file returned by the dialog box to PDDADMIN.NAM and the LZClose function is used to
close both files. The LZCopy function receives handles to the source and destination files
and returns the size of the destination file in bytes. The LZClose function receives the
handle of the file to be closed and does not return a value.
//copy the source file to the destination file

LZCopy(WfSrcFile, hiDstFile);
//close the files

The IDM_RUN_PBD case then deletes previously existing PBD output files using
the delete_files function and calls the PBD FORTRAN executable using the WinExec
function. The PBD program information file, pbd.pif causes the pbdfort.exe program to
be run in a window and the SW_SHOWMINIMIZED flag causes the window to be
created and displayed in an iconified state. The case does not wait for the termination of

211




the FORTRAN executable, but rather uses the break statement to terminate the case
allowing the user to continue to use the application while the FORTRAN executable runs
in the background. The user may also elect to maximize the window in which the
FORTRAN executable is running and observe the screen output provided. The screen
output from the original version is left largely intact and will look very familiar to
experienced PLL users.
//delete pre-existing pbd cutput files

delete_files(pbd_files);

{/ran the pbdfort.exe fortran program in an iconified window
WinExec("pbd.pif*,SW_SHOWMINIMIZED ),
}

}

The IDM_MITPLLHELP case starts the Windows™ MIT-PLL Help program.
The program is started using the WinExec function, and displayed in its default window
size using the SW_SHOW window state. If the WinExec function is unsuccessful, it
returns a value less than 32. The case checks the return value of the WinExec function
and if the value is less than 32, changes to the \help subdirectory and attempts again to run
the MIT-PLL Help program. If the WinExec function is again unsuccessful, an error
message is printed. In either case the directory is changed back to the original directory
using the chdir function. The chdir function changes the current working directory to the
specifed path and returns negative one if unsuccessful and 0 if successful.

case IDM_MITPLLHELP: {

/Nhis case handles maisi menu request for the help program
IR{ the WinExec function is unsaccessful, change to the \help directory and

212

® ofe

.i
h




/] uy again
iWinExec("pilhelp.cxe”,SW_SHOW)<32){
chdir("\belp”);

IAf WinExec is again unsucocssfil, print an error message and change back
// %0 the original directory

if (WinExec("pilhelp.exe”,SW_SHOW)<32) {
MessageBeep(MB_ICONEXCLAMATION);

MessageBox(hWad, *"Aa esror occured when starting \
the MIT-PLL Help Program.”,"ERROR!", MB_ICONSTOP | MB_OK | MB_TASKMODAL);

}
chdir("..");

The IDM_OPENPROJECT allows the user to select and open a pre-existing PLL
project file using the OPEN common dialog box. As in the IDM_RUN_PBD case,
character strings and an OPENFILENAME structure are declared for use with the OPEN
common dialog box. Additionally, a character string, buffer, a loop counter, M, and a
pointer to a file structure, *in, are declared.

case IDM_OPENPROJECT:{

OPENFILENAME ofa; //openfilename structure used with
// GetOpenFileName function
char  s=File{256]="V0", //name and location of the file
1/ to open
s2FilcTitle]256], //name of file to open
szFilser{}= "PRJ Files (*. PRHVO* PRIV", //Miltes for list box
bufler{120]; //ouffer for writing output
i ‘M /Noop counter
FILE ‘®im; /fpointer to a file structure

/finitialize the OPENFILENAME parameters

213

. . . - . C s e o s e e w7
— - 13 . [P e e e s sy o . : ey
e - .. et e . ERI . . IR ) e i ]




.

ofn.I1StructSize = sizeoROPENFILENAME),
ofn.hwndOwner = hWad,

ofe. lpstrFilter = szFileer;

ofin. ipstrFile= szFile;

ofa.aMaxFile = sizeof{szFile);

IAf the dialog is used successfully 10 chooee a file, execute the code ia the braces
if (GetOpenFileName(&ofn)) {

After the OPENFILENAME structure is initialized, the GetOpenFileName function is
to call the Open dialog box. If the function does not return successfully, the bulk of
code is skipped and the case is terminated. If the function does return successfully the

initialize function is called and the project_flag variable is set to indicate that a project is
open. The initialize function is used to reinitialize global variables that are initialized when
the MIT-PLL program is started.
//run the initialize function to initialize the global variables

initializeQ);
//set the project_flag to indicate that a project is now open

project_flag =1

The case then opens the file returned in the OPENFILENArfE structure, writes the
filename to the PROJECTFILE character string variable, read; the project file by calling
the read_project_file function and closes the project file.
//open the project file returned in the OPENFILENAME structure

in = fopen(ofn.IpstrFileTitle,r");
Ifwreite the file name into the PROJECTFILE variable

sprinf{PROJECTFILE, "%s" ofn.IpstrFileTitle);
//read the project file, and close the file

214




read_project_file(in);
fclose (in);

The IDM_OPENPROJECT case then opens the input file specified in the project
file. If the input file does not exist or for some other reason can not be opened, a warning
is printed, the project_flag variable is cleared, and the case is terminated. Otherwise, the
input file is read by calling the read_input_file function and closed using the fclose
function.

/lopen and read the input file, print an error message if unable
if ((in = fopen(INPUTFILE, "r")y== NULL) {
MessageBeep(MB_ICONEXCLAMATION);

MessageBox(hWnd, “Unable to open input file.®,
"ERROR!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),

//clear the project_flag to indicate that a project is not open
project_flag = 0;
break;

read_input_file(in);
//close the input file
fclose(in);

The case now uses a for statement to loop through the components, where LDEV is an
integer variable equal to one for the single component case and two for the mulitiple
component case, and read the blade and wake input files specified in the input file. If for
some reason any of the input files can not be opened, a warning is displayed in a message
box, the project_flag is cleared, and the case is terminated. The read_blade_file and
read_wake_file functions are used to read the blade and wake input files. The minimum
chord/diameter values for each component are set equal to the root chord/diameter values
supplied in the blade files at the end of the loop.

215




®
/Roop through the componeats and read the biade and wake files »
for(M=O0;M<LDEV,;M++}{
if (in = fopen(BLDIN{M*21]}, “r))== NULL) {
//print an error message if unable to open the blade file .‘
MessageBeep(MB_ICONEXCLAMATION),
speintf{buflier, "Unable 10 open blade file #3d.° M+1);
"ERRORY" MB. ICONSTOP | MB_OK | MB_TASKMODAL) >
Iiciear the project_flag to indicate that a project is not open
project_flag =0;
break; ®
}
read_blade_file(in,M),
flose(in); »
if ((in = fopen(WKIN[M*21], *r*)y== NULL) {
//print an error message if unable to open the wake file
MessageBeep(MB_ICONEXCLAMATION);
sprintf(buffer,"Unabe 1o open wake file #%d." M+1); L
MessageBox(hWnd, buffer,
"ERROR!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),
{iclear the project_flag to indicate that a project is not open »
project_flag = 0;
break;
}
read_wake_file(in,M); ’
fclose(in);
HUBCHD{M] = XCHD{0]{M]; _
} [
216 >




If the project has more than one component, the contraction ratio of the wake is
set based on the same logic as is used in the original PLL version. This is done for the
purpose of initializing the manual contraction ratio in the Default Settings dialog box with
an appropriate value.

/A there is more than one component, set the contraction ratio

iLDEV>1) {
if{image_duct=="Y")
CONRAT = 1.0;
else{
if{ffabs(RPM(2])<0.01){
iRXDLOC[0]>XDLOCI1])
CONRAT = 1.0;
clse
CONRAT = (.83;
}
else
CONRAT = 0.83;
}
}

Since a new project is now open, the pbd_flag variable is cleared to indicate that
the current PLL project has not yet been run in PBD. The position of the vertical scroll
bar is reset to the top by setting the Scroll_Pos integer value to zero and calling the
SetScrollPos function. The SetScrollPos function receives the handle of the window with
the scroll bar that is to be positioned, a flag that indicates in this case that the vertical
scroll bar is the bar that is to be operated on, the position of the scroll box inside the scroll
range, and a logical flag that indicates in this case that the scroll bar is to be repainted.
The function causes the scroll box, also known as the thumb, to be moved to the indicated
position and causes the scroll bar to be repainted.

217

!
=
3
¥
it
W
¥
i.
ki
N
v

420 2 >
PEAIAIEE S 15 s

e

AR St o M AT T




/fclear the pbd flag siace the currcutly open project has aot beea run in PBD

pbd_flag = 0;
//reset the vertical scroll bar position

Scroll_Pos = 0,

SetScrollPos(hOutputWnd, SB_VERT, Scroll_Pos, TRUE),

As a final action, the case uses the InvalidateRect function to cause the four child
windows to be repainted. This causes the new blade and wake data to be displayed and
causes the Output and Plot Viewer windows to be cleared. The case is then terminated.

//cause the screens t¢ be repainted
InvalidateRect(hBladeWnd, NULL, TRUE),
InvalidateRect(hWakeWnd, NULL, TRUE),
InvalidateRect(hOutputWad, NULL, TRUE),
InvalidateRect(hPlotWnd, NULL, TRUE);

}

The IDM_EDITBLADEWAKE case is identical in function to the
IDM_MITPLLHELP case. In this case the MIT-PLL Editor program is started in
response to the Edit|Blade/Wake selection oi; the main menu.

case IDM_EDITBLADEWAKE : {

//this case handles main menu request for the edit program

/iif the WinExec function is unsuccessful, change to the \edit directory and try again
iffWinExec("plledit.exe”,SW_SHOW)<32){
chdir(Medit"),

/fif WinExec is again unsuccessful, print an error message and change back
// to the original directory

if (WinExec("plledit.exe®,SW_SHOW)<32) {
MessageBecp(MB_ICONEXCLAMATION);

218




MessageBox(hWnd, “An error occured when \

starting the MIT-PLL Editor Program.®,
"ERROR!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),
}
chdir("..”);
) *‘»
|
P
} !
’

The IDM_EDITPROJECT checks the project flag and prints a warning message if
the user selects Edit[Project Settings from the main menu with no open project. Ifa
project is open, the case tests LDEV and calls the appropriate dialog box based on the ’
number of components in the project. H

case IDM_EDITPROJECT : {

DLGPROC DigProc; /Ipointer to a dialog . ‘
procedure i
//if no project is open, print a warning message and terminate the case '
if{!project_flag){ N
MessageBeep(MB_ICONEXCLAMATIONY; L
MessageBox(hWnd, "A project must be open in order to be edited.”,
*WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL);
break; '
//call the appropriate Project dialog box, depending on the number of components l-
iflLDEV <2){ ?
DlgProc = (DLGPROC)MakeProcInstance((FARPROC)Project 1 DigProc, ghlnstance);
DialogBox(ghlnstance, "PROJECT1*, hWnd, DigProc); i;
219 b




DigProc = (DLGPROC)MakeProclastance((FARPROC)Project2DigProc, ghinstance),
DialogBox(ghlnstance, “PROJECT2", hWnd, DigProc);
}
FreeProclastance((FARPROC)DigProc),
break;

The IDM_TILE, IDM_CASCADE, and IDM_ARRANGE cases respond to the

' Window{Tile, Window|Cascade, and WindowjArrange Icons selections on the main menu. »
They use the SendMessage function to send the appropriate message to the MDI Client
Window to cause the child windows to be tilc 1 or cascaded, or the iconified window§ to
‘ be arranged. ®
case IDM_TILE : {
. //send a message the the MDI client window to tile the child windows » (
SendMessage(hMDIClientWnd, WM_MDITILE, 0, OL);
break;
‘ } b’
case IDM_CASCADE : { S
//send a message the the MDI client window to cascade the child windows
. SendMessage(hbMDIClientWnd, WM_MDICASCADE, 0, OL); »
break;
}
¢ case IDM_ARRANGE : { »
//send a message the the MDI client window to arrange the child window icons
SendMessage(hMDIClientWnd, WM_MDIICONARRANGE, 0, 0L);
‘ break; »

220




The IDM_RUN case responds to main menu FilejRun requests. The
OPENFILENAME, character, HFILE and OFSTRUCT declarations are made to support
the use of the OPEN common dialog box in selecting a non-axisymmetric stator file if
necessary. The DLGPROC variable is used for calling dialog boxes necessary for
executing a variety of runtime options, in addition to calling the Runtime Settings dialog
box. A pointer to a file structure is also declared, as well as a number of loop counters
and a dummy variable for testing the value of the circulation distribution sine series

coefficients.

case IDM_RUN : {
/fthis case handles to run MIT-PLL

DLGPROC DigProc;

procedure
OPENFILENAME ofn;
char  szFile[256)="V0",

szFileTitle[256],

szFilter{}= "STA Files (*.STA)WV*.STAV",

szDst[] = "STATOR.DAT";
OFSTRUCT  ofSuSrc,
open file
ofStrDest;
HFILE WfSrcFile,
handles
hiDstFile;
int kM, ij,
circ_check=0;

FILE *out;

{/pointer to a dialog

{/openfilename structure used with
/1 GetOpenFileName function
//name and location of the file

// to open

//name of file to open

/filter for list box

/ffile to copy selected file into
//source and destination

/1 structures

“Y/source and destination file

/Noop counters
{/dummy integer for checking for

// non-zero circ distribution

/fpointer to a file structure

The case first tests the project_flag. If no project is open a warning message is displayed

and the case is terminated. If a project is open, the Runtime Settings dialog box is then

called and the user is allowed to select from a variety of run time options.

221

~~~~~~~~

¥ «e:-":iz.w TRt

PR

S R T O s T

;
L
{

|
£
%-:
LS

T v e

iftiproject_flag) {
MessageBoep(MB_ICONEXCLAMATION);

MessageBox(hWnd, "A project must be open in order to be run.”,
WARNING!, MB_ICONSTOP | MB_OK | MB_TASKMODAL);

break; }

DigProc = (DLGPROC)MakeProcinstance((FARPROC)RunTimeDlgProc, ghinstance);
*RUNTIME®, hWid, DigProc);

Frecbrcisiance (FARPROCIDIgP0:
When the Runtime Settings dialog box terminates, the case tests the run_ok_flag and
terminates the case if the user selected the CANCEL button. If the OK button was
selected, the delete_files and unlink functions are used to delete pre-existing temporary
data files.
/fif the cancel button is selected on the runtime dialog box, terminate the case

ifirun_ok_flag) break;
//delete pre-existing temporary data files

delete_files(pll_files);

unlink("currpbd.err”);

The case then sets variables that control the way data is displayed in the Wake,
Output, and Plot Viewer windows. The Scroll_Pos variable was discussed previously.
The component_flag variable determines which wake file is diplayed in the Wake Viewer
window. The draw_plot_flag variable determines whether or not plots will be drawn in
the Plot Viewer window. The output_flag variable determines which output page is
displayed in the Output Viewer window. The plot_page flag variable determines which
page will be plotted in the Plot Viewer window, and the plot_component_flag variable
determines whether component one or two or both will be displayed.

//re-initialize the flags that control output and plot viewer plotting

222

7

y W W |

// routines and cause the output and plot viewers to be redrawn

Scroll_Pos = 0;
componesat_flag=0,

The scroll bar position is then reset and the Output Viewer and Plot Viewer windows are
cleared since the data displayed there is no longer applicable.

SetScrollPos(hWnd, SB_VERT, Scroll_Pos, TRUE);

InvalidateRect(hOutputWnd, NULL, TRUE),

InvalidateRect(hPlotWnd, NULL, TRUE);

The IDM_RUN case now tests the circulation_optimization_flag variable to
determine if the user has chosen to optimize circulation. If not, the case uses a for loop to
check the absolute values of the circulation distribution from the blade file(s) to ensure
that a non-zero distribution has been supplied by the user. If the user supplied a zero
circulation distribution then the circulation_optimization_flag is set by the program and a
warning message is displayed.

//if the circulation optimization flag is not sct, ensure that 8 non-zero
// circulation distribution has been input for both components, otherwise

/f set the flag and print a warning
iR{Icirculation_optimization_flag) {
/Noop through the components
for(M=0;M<LDEV,M++)
/Moop through the radii for each component
for(k=0,k<MRPIN[M] . k++)
/increment the circ_check variable
if{fabs(XG[k][M])>del)
circ_check++;
if{!circ_check){
223

ey Ty —

pese VIR 55 S IR G 4 R RN

T I T R R N TR S YR A S

s e,

B

circulation_optimization_flag = 1;
MessageBeep(MB_ICONEXCLAMATION),

MessageBox(hWnd, "Blade circulation input must be noo-zero \
or Circulation Optimization must be selected. Circulation Optimization now \
selected.”,

"WARNING!"*, MB_ICONSTOP | MB_OK | MB_TASKMODAL);

}

The case proceeds to check a variety of run time options and perform the
necessary actions. The first is the option to use the current blade data as input data. If
this option is selected, the program tests to see if the project is a ringed propeller. Ifit is,
a warning message is printed since this option is not currently available for ringed
propellers.

/fif the reset blade data option is selected and the propulsor is ringed, print a warning
if{use_curr_blade){
iRringed_propeller{0}=="Y"){
MessageBeep(MB_ICONEXCLAMATION);
MessageBox(hWnd, "The reset blade data option is not available for \
ringed propulsors. Continuing with normal run.”,
"WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),

}
}

The case then calls the write_misc_files function. This function writes a number of short
data files based on the current project settings. The files are used to provide input to the
PLL FORTRAN executable. |
/fwreite the misc output files that provide input to the fortran executable

write_misc_files();

224

» v
.

If the user has elected to evaluate a non-axisymmetric stator, the STATOR.DAT file is
deleted if it exists and the Select Stator File dialog box is called to allow the user to select
a stator file.

I/ the evaluste nonaxisymmetric stator selection is made on the runtime
// dialog box, allow the user 10 select a data file

if{eval_nosaxi_stator) {

//delete the pre-existing data file
unlink(*STATOR.DAT");
/finitialize the OPENFILENAME parameters
memset(&ofn, 0, sizeof OPENFILENAME));
ofn. IStructSize = gizeof{ OPENFILENAME),
ofa. hbwndOwner = hWnd;
offin_lpstrFilter = grFilter;
ofn.lpstiFile = s7File;
ofn.nMaxFile = sizeof{szFile);
ofn IpstrFileTitle = g7FileTitle;
ofin. lpstrTitle = *SELECT STATOR FILE";
ofn.nMaxFileTitle = sizeof{szFileTitle);
ofn.Flags = OFN_FILEMUSTEXISTIOFN_HIDEREADONLY,

If the GetOpenFileName function returns successfully, the stator file selected by the user is
copied into the STATOR.DAT file. The eval_nonaxi_stator variable is then cleared and
the no_runtime_options flag is set so that there is no run time option selected the next
time the Runtime Settings dialog box is called.
/£ the dialog is used successfully to choose a file, execute the code in the braces

if (GetOpenFileName(&ofn)) {
//open the source file

MSrcFile = LZOpenFile(ofn. ipstrFileTitle, &ofStrSrc, OF_READ);
//create the destination file

hiDstFile = LZOpeaFile(szDst, &ofStrDest, OF_CREATE),
/lcopy the source file 1o the destination file

LZCopy(hfStcFile, MDstFile),

225

N v

3o e e

T R RS, T T g

licioss the files
e " e
}
//resct the run time options ’
eval_nomaxi_stator = 0;
no_runtime options = 1,
}
®
The next runtime option handled is the Unload Component(s) option. If the
unload_flag variable is set, the unload.set file is opened and written for use by the
' FORTRAN exccutable. A switch handles the two cases, single and multiple component »
propulsors.
/Af the unload flag is set, call the appropriate dialog box and write a file with either the Glauert coefficient
. // unload fractions or the hub and tip steepness exponents and coefficients » ®
if{unload_flag){
l/open the unload scitings flag
. out = fopen(“unioad.set", *w"); 0
itch(LDEV) !
euel:{{
- »
If the current project has a single component, case 1 is executed. If there is no
image hub and the component is not ringed and there is no zero gap duct, the
. GLAUERT!1 dialog box is called. This allows the user to view the sine series coefficients »
that describe the current circulation distribution and to alter them in order to unload the
biades. The data input by the user is then written to the unload.set file.
/A there is no image hub and the component is not ringed and there is no image duct, or there is an image »

' /1 duct and the gap is wide enough, then call the Glauert 1 dialog box aad write the unload fractions
if{(image_bub!="Y") && (ringed_propeller{Oji="Y") &&

—_——‘“‘"’—

((image_duct!="Y") | ((image_duct=="Y") &&
((DDIAM-XDIAMI[O]) >= 0.000002)))) {

D LTt e i ®

FreeProcinstance((FARPROC)DigProc);
Iereite the file

fpriatf(out,"%d\n",NGC);

$or(i=0;i<NGC;i++)

fprintflout, “%fn",GC_UNLOAD_FRACIO](i}).
}

If the above condition was not met, the Steep1 dialog box is called to allow the user to
select steepness exponents with which to unload the hub and/or tip. The hub and tip
unload percentages are then calculated using the same scheme as the original PLL version
and the Coeflicient] dialog box is called in order to allow the user to select unload
coefficients. The unload.set file is written with the user supplied exponents and
coefficients.

/fif the condition sbove is not met, then call the Steep 1 dialog box and then the Coefficient | dialog box
// and thea write the file

.‘ 7
else { ;
DigProc = (DLGPROC)MakeProcinstance((FARPROC)Steep1DigProc, ghlnstance);

DialogBox(ghlnstance, "STEEP1", hWnd, DigProc);
FreeProclnstaace((FARPROC)DigProc);

//calculate the hub and tip unload percentages
Q= (bub_radius{0] - RZ{0])/(1.0 - RZ[0]);
if{image_hub=="Y") {

OMQSQ=1.0-Q*Q;
GNHCIO; = 100.0*sqr(OMQSQ) *pow(OMQSQ,(2*NHC[0]-2));

~- >

P=10-Q
OMPSQ = 1.0 - P*P; b
GNHC[0] = 100.0*sqrt(OMPSQ)*pow(P,(2*NHC[0]-2)); ,

227 b

Q = (tip_radius{0] - RZ[0] M(1.0 - RZ{0]);

if{(ringed_peopeller{O]=="Y")}{
- ((image_duct=="Y")&&((DDIAM - XDIAMJ0])< 0.000002))){
P=10-Q

OMPSQ = 1.0 - P*P,
GNTCI0] = 100.0*sqri(OMPSQ)*pow(OMPSQ,(2*NTC[0}-2));
}

else {
OMQSQ = 1.0 - Q*Q;
GNTC{0] = 100.0*3qrt(OMQSQ)*pow(Q.(2°NTCj0}-2));

}
//call the COEFFICIENT! dialog box

DigProc = (DLGPROC)MakeProcinstance((FARPROC)Coefficient 1 DigProc,
ghinstance);
*COEFFICIENT1", hWnd, DigProc);

DialogBox(ghinstance,
FreeProcinstance((FARPROC)DigProc);
/Ivrite the file

fprintf{out,"%d\n%N\n%d\n%\n", hub_steepness[0],
hub_coefficient[0], tip_steepness|0], tip_coeficient{0]);

}

)

The multiple component case is analogous to the single component case. For
loops are used for the calculations and writing the unload.set file.
case 2: {

IAf there is no image hub and the components are not ringed and there is no image duct, or there is an
image
1/ duct and the gaps are wide enough, then call the Glavert 2 dialog box and write the unload fractions

if{(image_bubl="Y")&&(ringed_propeller{0]I=Y") &&
(ringed_propeller{1]1="Y")&&((image_duct!="Y")}
((image_duct="")&&
(((DDLAM-XDIAMJ0])>=0.000002)&&
((DDIAM-XDIAM][1])>=0.000002))))) {

DigProc = (DLGPROC)MakeProcinstance((FARPROC)Glauert2DigProc, ghinstance);
DialogBox(ghinstance, "GLAUERT2", hWad, DigProc);
FreeProclnstance((FARPROC)DigProc);

fprintiout,"%d\n"NGC),

Ihortite the file

PRt iseie SR gt

» 2
3

for(=0j<LDEV j+){
$or(i=0,iNGC;i++) {
fprintRout,"%f\n", GC_UNLOAD_FRACIjj(iD:
}
}

1AL the condition above is not met, then call the Steep 2 dislog box and then the Coeflicient 2 dialog box
// and thea write the file

else {
DigProc = (DLGPROC)MakeProcinstance((FARPROC)Steep2DIgProc, ghlnstance);
DialogBox(ghInstance, “STEEP2*, hWnd, DigProc),
Fmehoclnﬁmce((FARPROC)Dl;Pmc)
//calculate the hub and tip unload percentages
for(i~0;i<LDEV;i++){
Q = (hub_radius{i] - RZ{i] ¥(1.0 - RZ{i]);
if{image_hub=="Y") {

OMQSQ=1.0-Q*Q;
GNHCIi] = 100.0*sqrt(OMQSQ)*pow(OMQSQ,(2*NHCli}-2));

}

P=10-Q
OMPSQ = 1.0 - P*P;
GNHCIi] = 100.0*sqrt(OMPSQ)*pow(P,(2*NHCIi}-2));
}

Q = (tip_radius{i] - RZ[i] ¥(1.0 - RZ[i]);

((DDIAM - XDIAM{i])< 0.000002))) {

P=10-Q

OMPSQ = 1.0 - P*P;

GNTCli} = 100.0*sqr(OMPSQ)*
pom(OMPSQ,(2*NTCli}-2));

}

OMQSQ=1.0-Q*Q;

e m..».-':

s e s g enn e

v

?“ﬂl“‘""»

1.
¢
N
H
£

GNTCYi} = 100.0*sqrt(OMQSQ)*
pow(Q.(2*NTClil-2)),

}
DigProc = (DLGPROC)MakeProcinstance((FARPROC)Coefficient2DigProc,

ghinstance),
DialogBox(ghinstance, * *, hWnd, DigProc); »
FreeProcinstance((FARPROC)DigProc),
for(i=0;i<LDEV,i++)
fprintf{out, "%ed\n%\n%d\n%N\n", hub_steepnessii],
hub_coefficient{i], tip_stecpaessii], tip_coefficient{i]); »
}
break;
}
} »

After the single and multiple component cases are handled, the case clears the unload_flag,
sets the no_runtime_options flag, and closes the unload.set file.

//reset the run time options and close the unload settings file > o
unload_flag = 0;
no_runtime_options = 1; .
fclose(out); >’

} - L.
The option to match an expanded area ratio is the next option handled by the
: IDM_RUN case. Ifthe match_EAR_flag is set, the single or multiple component EAR >
dialog box is called as appropriate. The ear.set file is then written and the
match_EAR flag is cleared.
»

I/if the user selected the match EAR option, call the appropriate EAR dialog
1/ box and write the car.sct file

if{match_EAR flag){
i{LDEV==1){ >
DigProc = (DLGPROC)MakeProcInstance((FARPROC)EAR 1DigProc,

230

ghinstance),
DialogBox(ghlnstance, "EAR1", hWnd, DigProc),

DigProc = (DLGPROC)MakeProcinstance((FARPROC)EAR2DIgProc,
Wﬂm “EAR2", hWnd, DigProc),
}

FreeProcinstance((FARPROC)DigProc);

out = fopen(“ear.set”, “w");

for(7=0j<LDEV j++)
fprintf{out,"%f\n",EAR(j]);

Iiveset the run time options and close the setting file

match_EAR flag =0,
no_runtime_options = 1;

fclose(out);
}

If the option to maximize thrust for a given torque and determine ship speed
option is selected, the maximize thrust flag is cleared. If the project is a multiple
component propulsor a warning message is printed since the option is not available for
multiple component propulsors.

I/if the maximize thrust for given torque and determine ship speed option is
1/ choeen, reset the runtime options and print a warning message if there is

/1 more than one component
imaximize_thrust){
maximize_thrust = 0;
00_tuntime_options = 1;
ILDEV>1Y
MessageBeep(MB_ICONEXCLAMATION);

MessageBox(hWnd, "The Maximize Thrust option is not available for \
multiple component propulsors. inuing with normal run.”,
*"WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),

231

TSRS i T T

=z

LEETDT BN

IR

o X PG A e IR T S

TN

If the user has elected to optimize RPM or diameter, a test is made to determine if
the project is a ringed _ropeller or if the project has a duct. If the project is not a ringed
propeller and has no duct, the Optimization Data dialog box is called and the user may
select the component to optimize. The user must specify a required thrust to optimize for
and in the case of a contra-rotating propulsor must specify a torque coefficient. The
OPTIM.DAT file is then written to provide the user supplied data to the FORTRAN
executable and the run time option is cleared.

/Af the user selected the optimize RPM or diameter option, call the optimization
+/ dialog box

if{loptimize_rpmjoptimize_diameter){
//the optimization procedures can not be used for ringed or ducted propulsors
if(ringed _propeller{0}!="Y'&&image duct!="Y"){

DigProc = (DLGPROC)MakeProcInstance((FARPROC)OPTIMIZATIONDIgProc, /
ghinstance);
DialogBox(ghlnstance, "OPTIMIZATION", hWnd, DigProc);
¥
FreeProcInstance{(FARPRCC)DIgProc); ."-, ‘

out = fopen("OPTIM.DAT", "w");
fprintflout, "%d\n",opt_comp); » q
fprintf{out,"%f\n",thrust_req);
ﬁ;ﬁmf(qn,'%i\n‘.torq_mﬁ);
{/reset the run time options and close the data file

optimize_rpm = 0; [] *
optimize_diameter = 0;
po_runtime_options = 1;

fclose(out);

232 ‘

If the project is a ringed or ducted propulsor, a waming message is written into the
OPTIM.DAT file for display after the run is complete and the run time option is cleared.
Since the options.set file was previously written assuming that the RPM or diameter
would be optimized, the file is rewritten with no runtime option.

else{
out = fopen("OPTIM.DAT", "w"),
fprintR(out, "Optimization procedures can not be \
used for ringed or ducted propulsors");
fclose(out);
optimize_rpm = 0;
optimize_diameter = 0;
no_runtime_options = 1;
out = fopen("options.set”, "w");
fprintf{out,"99\n");
fprintf{out,"%f\n", horsepower);
fprintf(out,"%f\n", thrust_coefficient);
fclose(out);
}

-~

The final action of the IDM_RUN case is to use the WinExec function to cause the
PLL FORTRAN executable to be run in an iconified window.
//ran the fortran executable in an iconified window

WinExec("pll.pif",SW_SHOWMINIMIZED),

233

The IDM_PRINTPLLPLOTS case is used to respond to the File|Print PLL Plots

¢ main menu selection. Two temporary integer varisbles are declared. They are used to ’
retain information regarding the plot currently displayed in the Plot Viewer window since Q
the plot_page and plot_component_flag variables are altered during the printing process.
¢ A loop counter is declared for the purpose of keeping track of the number of copies ’
printed. PRINTDLG and DOCINFO structures are declared for use in calling the Print
common dialog box and specifying the details of the document for the Windows™ Print
‘ Manager program. The PRINTDLG and DOCINFO structures and the printing process »
were described in Appendix A 3.
case IDM_PRINTPLLPLOTS : {
‘ it temp plot_page, licopies of the plot_page and ’
temp_plot_component_flag, // plot_component_flag indices
i3 /Noop counter
PRINTDLG pd; /fprint dialog structure
¢ DOCINFO di; Nidocument information structure ’»
The case first tests the draw_plot_flag to determine if any PLL plots are available
. for printing. If no plots are available, a warning message is displayed and the case is »’
terminated.)
/fif there is are no PLL plots to print, print 2 warning and terminate the case
; if(1draw_plot_flag){ »
MessageBeep(MB_ICONEXCLAMATION);
MessageBox(hWnd, "There are no PLL plots to print.”,
P "WARNING!*, MB_ICONSTOP | MB_OK | MB_TASKMODAL); »
break;
}
¢]

IfPLL plots are available for printing, the plot_page and plot_component_flag
values are saved in the temporary integer variables that were declared for that purpose.

234

This is done so that they can be restored after the printing process. The result of not
e restoring the values would be to possibly alter the plot displayed in the Plot Viewer

window by processing a print request.

//otheswise, process the request

¢ lisave copics of the curreat plot_page and plot_component_flag indices since
/I they will be altered during the printing process

temp_plot_page = plot_page;
temp_plot_component_flag = plot_component_flag;

The PRINTDLG and DOCINFO structures are initialized in the same way as described in
Appendix A.3. The pd.nFromPage and pd.nMinPage are set to one and the pd.nToPage
< and pd.nMaxPage parameters are set to one and four respectively. This limits the range of .
page numbers available to the user through the Print common dialog box and initializes the
values displayed in the box to one and four since PLL generates four plot pages. '
q //set all printdlg structure members to zero. ’ -
memset(&pd, 0, sizeof(PRINTDLG));
//initialize the document information structure "
T
q di.cbSize = sizeoRDOCINFO); ‘.
di.lpszDocName = "MIT-PLL PLOTS"; ,
di.lp@utput = NULL;
// Tnitialize the necessary PRINTDLG structure members,
e pd.IStructSize = sizeof(PRINTDLG);
pd.hwndOwner = hWnd;
pd.Flags =PD_RETURNDC{PD_HIDEPRINTTOFILE[PD_NOSELECTION,
pd.nFromPage =1
pd.aToPage =4,
pd.nMinPage =1,
e pd.nMaxPage =4;
I/if the PrintDlg function is successful, execute the code in the braces

if (PrintDlg(&pd) = 0)

VT

i
. ei

235

If the PrintDlg function returns successfully, a document is started and a for loop is
used to cause the number of copies requested by the user, pd.nCopies, to be printed. The
case uses two additional for loops embedded in each other within the first for loop. The
first causes all three available plots for each page in the case of a multiple component
propulsor to be printed. The second causes each selected plot page to be printed.

//start the output document
StartDoc(pd. hDC, &4i);

/Noop through the number of copies requested
for(7=0; j<pd.nCopies; j++){

11# of plots per page, 1 for single component and 3 for multiple component propulsors
// calculated in the for loop by 1 + 2*(LDEV-1)

for(plot_component_flag=0;plot_component_flag<(1+2*(LDEV-1)),
plot_component_flag++){

for(plot_page=pd.nFromPage-1;plot_page<pd.nToPage;
plot_page++){

StartPage(pd.hDC),

printplot(pd.hDC),

EndPage(pd hDC);
}

The print process is terminated in the same way as described in Appendix A.3.
The plot_page and plot_component_flag variables are restored to their original values and
the case is terminated.
EndDoc(pd hDC);

Deletd)C(chhD(,;);

if (pd.hDevMode 1= NULL) GlobalFree(pd.hDevMode);

236

o

0

e r sl

| if (pd.ADevNames = NULL) GlobalFree(pd. ADevNames);

' //reatore the plot_page and plot_component_flag indices 3
plot_page = temp_plot_page; g
plot_component_flag = temp_plot_component_flag; !

. = i

) 3
{
The IDM_PRINTPBDPLOTS case is used to cause PBD plots to be printed. It is :
e very similar to the IDM_PRINTPLLPLOTS case. The differences will be emphasized in ’
this discussion.
case IT RINTPBDPLOTS : {
e it temp_plot_page, Ncopy of the plot_page index ’
§ 5 /floop counter

PRINTDLG pd; Ifprint dialog structure

° DOCINFO di; //document information structure) q
FILE *plot; I/painter to a file structure
POINT origin={320,240}; /lorigin of plot in screen

// logical coordinates
])

The IDM_PRINTPBDPLOTS case declares a pointer to a FILE structure to be .
used in opening PBD output files that will be drawn to the printer device context, A |
POINT structure is declared and initialized. It is used to determine the point in the display
area that will be used as the origin of the printed plots. As in the previous case, a
temporary variable is declared to keep track of the plot page currently displayed in the
Plot Viewer window. Only one temporary variable is required since the PBD plots do not
have the option of presenting data for the first, second, or both components. Also as in
the previous case, if there are no PBD plots to print, a warning message is printed and the

case is terminated.

Iiif there is are no PBD plots to print, print a warning and terminate the case

237

ifipbd_flag){

MessageBeep(MB_ICONEXCLAMATION);

MessageBox(hWnd, “There are no PBD plots to print.”,
WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),

break;
}
//otherwise, process the request

After a copy of the plot_page value is saved the PRINTDLG and DOCINFO
structures are initialized. In this case the page range is a function of the PBD run mode.
The pd.nToPage is set to five since that is the minimum number of pages available. The »
value is incremented by one if the PBDOUT.CMYV file is found to exist. The
pd.nMaxPage value is then set equal to the pd.nToPage value.

. Ilmaf:o?yoftheqmentplot_p-geindexsimeitwiubealtemdduﬁng » ©
// the printing process
temp_plot_page = plot_page;
//set all printdlg structure members to zero, ‘
¢ memset(&pd, 0, sizeofPRINTDLG)); "

//initialize the document information structure
di.cbSize = 8izeof{DOCINFO);
di.lpszDocName = "MIT-PBD PLOTS"; »
dilpszOutput =NULL;

// Initialize the necessary PRINTDLG structure members.

¢ /Af the pbdout.cmv file exists, set plot_page to 9 and plot that file »

pd.IStructSize = sizeoffPRINTDLG);
pd.hbwndOwner = hWnd;
pd.Flags = PD_RETURNDCIPD_HIDEPRINTTOFILEPD_NOSELECTION;

pd.oFromPage =1,
¢ pdaMinPage =1; .' .
pd.nToPage =5

/if the pbdout.cmv file does not exist, the maximum number of plots is 5,

238

// otherwiee it is 6
if{acceas("pbdout.cmv®, 0) == 0) pd.aToPage++;
pd.aMaxPage = pd.aToPage;

If the PrintDig function returns successfully, the document is started and a for loop
is again used to control the number of copies printed. Another for loop is used to loop
through the pages to be plotted. The plot_page value in this case is incremented by three
in this case i order to cause the four PLL plot pages to be skipped.

/£ the PristDig function is successful, execute the code in the braces
if (PrimDig(&pd) != 0) {

//start the output document

StartDoc(pd. ADC, & di),
/Mwop through the number of copies requested

for(j~0; j<pd.nCopies; j++){

foe(plot_page=pd.nFromPage+3;plot_page<=pd.nToPage+3;plot_page++){
StartPage(pd hDC),

A switch is used to test the value of the piot_page variable and cause the
appropriate files to be drawn to the printer device context, pd.hDC, that was returned by
the PrintDlg function.

switch(plot_page){

Case four corresponds to the plot of the input blade grid and control point net.
The input blade grid is contained in the PBDOUT.IBG file and the B-spline net is
contained in the PBDOUT BSN file. The files are tested sequentially and if found to exist,
address or the origin, a pointer to the FILE structure, and a color value index are passed
to the paint_graphs function to cause the plots to be drawn to the printer device context.
The files are then closed.

239

’
'
|
|
p o

case 4:{
IAf the pbdout.ibg file exists, opea it and plot it

iaccess("pbdout.ibg”, 0) == 0) { |
plot = fopea("pbdout ibg”, *r); >
paint_graphe(pd ADC, origin, plot, 0);
fclose(plot); }

if{access("pbdout ben®, 0) == 0) { »
plot = fopea("pbdout ben’, *r");
paint_graphs(pd.hDC, origin, plot, 1);
fclose(plot), } »

break;

)

' Cases five through nine are handled in a similar manner. Case five plots the > o
drawing of the output blade grid, centerbody, transition wake, and hub and duct images. o
It uses the PBDOUT HUB file with the paint_hub fnction, and the PBDOUT.HDI and
‘ PBDOUT.OBG files with the paint_graphs function. b
case S:{ |
if{access("pbdout.hub”, 0) == 0) {

‘ plot = fopen("pbdout bub”, *r*);
paint_hub(pd.DC, origin, plot);

Slose(plat),)

ifaccoss("pbdout.bdi", 0) == 0) {
plot = fopea(“phdout. bdi", “r");
] peint_graphe(pd.ADC, origin, plot, 1), »
fclose(plot); }

if{access(“pbdout.obg", 0) == 0) {
plot = fopen(“pbdout.obg”, “r");
paint_graphe(pd.ADC, origia, plot, 0);
flose(plat),)

break;

}

Case six draws the control point velocity plot using the PEDOUT.VCP file and the
paint_vcp function.
case 6:{
if{access(“pbdout.vcp®, 0) == 0) {
plot = fopea(“pbdout.vep®, “r");
paint_vcp(pd.hDC, origin, plot);
fclose(plot); }
break;
}

Case seven draws the circulation contour plot. It uses, depending on the run |
mode, either the PBDOUT.GSP or the PBDOUT.SOL function. The paint_gsp function
is used in either case.

case 7:{

/Rthe circulation contour plot file may be cither a .gsp or a .sol file
if{access("pbdout.gsp®, 0) == 0) {
plot = fopen(“pbdout.gsp®, °r");
paint_gsp(pd.hDC, origin, plot),
fclose(plot); }
eise if{access("pbdout.sol®, 0) == 0) {
plot = fopen(“pbdout.sol”, "r"),

241

Z2oN R g

paint_gsp(pd. ADC, origia, plot);
fclose(plot), }

break;

}

Case eight draws the radial circulation distribution plot. It uses, depending on the
run mode, either the PBDOUT.RDC or the PBDOUT.SGR function. The paint_rdc
function is used in either case.

case 8:
/Ahe radial circulation distribution file may be cither a .rdc or a .sgr file

if{access(“pbdout.rdc”, 0) == 0) {
plot = fopen(“pbdout.rdc”, *r"),
paint_rdc(pd.hDC, plot),
fclose(plot), }

else if{access("pbdout.sgr", 0) == 0) {
plot = fopen(“pbdout.sgr”, *r");
paint_rdc(pd.hDC, piot),
fclose(plot); }

break;

}

The final case, case nine, prints the circumferential mean velocity plot using the
PBDOUT.CMYV file and the paint_cmv function.
case 9:{
if{access("pbdout.cmv”, 0) == 0) {
plot = fopen("pbdout.cmv®, *r%);
paint_cmv(pd.hDC, origin, plot),

242

» 7
.I

-

The document is terminated in the manner described above, the plot_page value is
restored, and the case is terminated.
EndDoc(pd.hDC);

if (pd.hDevMode |= NULL) GlobalFree(pd hDevMode);

if (pd.hDevNames 1= NULL) GlobalFree(pd. hDevNames),
Ifrestore the plot_page index

plot_page = temp_plot_page;

break;

The IDM_PRINTOUTPUT case responds to main menu File|Print Output
selections. The case declares a PRINTDLG structure and a DOCINFO structure as
expected. Loop counters and a temporary variable for storing the value of output_flag are
declared. The integer variable page is used in testing to determine if a particular page
should be printed. The print_flag array is also used in determining if a particular page
should be plotted.

case IDM_PRINTOUTPUT : {

int Em_outpu_ﬂu. ;Icqu of the output_flag index
L) floop counters
page;’ /fpage number

243

PRINTDLG pd; //print dialog structure
DOCINFO di; //document information structure
int print_fiag{11}={1,0, {finteges array of flags that

0,0, /1 indicate if a particular

0,0, // file should be printed

0.0,

0,0,

o).

If there is no output to print, as indicated by the absence of the summary.out file, a
warning message printed and the case is terminated.
/Af 8o output is available, print an error message and terminate the case
iR{!project_flagll!(access("summary.out”, 0) == 0)){

MessageBeep(MB_ICONEXCLAMATION);
MessageBox(hWnd, "A project must be open and output available in order to print.”,
"WARNING!", MB_ICONSTOP { MB_OK | MB_TASKMODAL);

break; }

If there is output to print, the case proceeds by filling in the print_flag array. Two
conditions must be met in order for an output file to be printed. The first is that the file
must exist. The print_flag is filled in based on the existence of the output files
corresponding to the position in the array. The 1th position in the array, for example, is

incremented by one from its initialized value of zero if the detaill.out file is found to exist.

The summary.out file is assumed to exist since the case was not immediately terminated
based on the initial test, and the Oth value is initialized as one.

//otherwise, process the request

//set the print_flag for cach output file that exists for this run
iftaccess("detail1.ont", 0) == 0) print_flag{1] ++;
if{access("detail2.out", 0) == 0) print_flag(2] ++;
if{access("stress.out”, 0) ==0) print_flag{3] ++;
iftaccess("duct.geo®, 0) == 0) print_flag{4] ++;
if{access("fards.out", 0) ==0) print_flag(5) ++;

244

iXacceas("noaaxi.cir®, 0) == 0) print_flag{6] ++;
i{access("nonaxi.for”, 0) == 0) print_flag(7] ++;
iKaccess("nonaxi.cmp”, 0) == 0) print_flag[8] ++;
if{acceas("nonaxi.hes”, 0) == 0) print_flag{9] ++;
iKaccess("pbdout.ktq®, 0) == 0) print_flag{10}++;

The case then saves a copy of the output_flag and initializes the PRINTDLG and
DOCINFO structures. The output_flag is an index that indicates the file that is to be
displayed in the Output Viewer window. The copy is saved so that the file displayed in
the window will not be changed by the printing process.
lisave a copy of the output flag since it will be altered during the printing process

temp_output_flag = output_flag,

//set all of the printdig structure members to zero
memset(&pd, 0, sizcoffPRINTDLG)),
//initialize the document information structure

di.cbSize = sizeof{ DOCINFQ);
di.lpszDocName = "MIT-PLL OUTPUT™,
di.lpszOutput = NULL;

//initialize the necessaty PRINTDLG structure members.
pd.IStructSize = sizeof(PRINTDLG);
pd.bwndOwner = hWnd;
pd.Flags = PD_RETURNDCPD_HIDEPRINTTOFILE|PD_NOSELECTION;
pd.nFromPage =I;
The sum of the values in the print_flag array is equal to the total number of files available
for printing. A for loop is used to sum the values in the array into the pd.nToPage
variable. The pd.nToPage value is then copied into the pd.nMaxpage variable to complete
the initialization process for the PRINTDLG structure.
//sum the print_flag array to determine how many files are available to print
for(i=0;i<11;++) pd.nToPage+= print_flaglil;

pd.nMinPage = 1;
pd.nMaxPage = pd.nToPage;

//if the PrintDig function is successful, execute the code in the braces

245

if (PrisDig(&pd) I= 0) {
/fbegin the document
StartDoc(pd. hDC, &4i),
/Nloop through the number of copies requested
for(7~0; j<pd.nCopies; j++){

If the PrintDlg function returns successfully, a document is started and a for loop is
used to print the number of copies requested by the user The second condition that must
be met in order for a file to be printed is that the user must specify that it be printed by
including it in the print range. In this case, the from page and to page values selected by
the user are interpreted as from file and to file values.

The temporary integer value, page, is set to zero. The value in page will be used

to indicate the file number corresponding to a particular output file.

//set the current page number to zero
page=0;

The case now uses a for loop to index through the print_flag array. If the value of
the print_flag array indicates that the file exists, page is incremented so that the value in
page corresponds to the page number, or file number, of the file corresponding to the
print_flag index. |

/Noop through each of the ten possible output files
for(i=0,i<10;i-++){
/if the file exists, increment the page number
if{print_flagli){
pagett,

246

v "

Evand 2 ILN

The case then tests page to determine if it is within the range of files the user
desires to print. Ifit is, then a page is started with the output_flag set so that the .
appropriate file will be printed. The printer device context is then passed to the printout
function and the appropriate file is printed. “
//if the page number is in the range requested by the user, print it ;
if{(page>=pd.nFromPage)&& (page<=pd.nToPage)){
output_flag = i; .
StartPage(pd. hDC);
printout(pd.hDC);
EndPage(pd.hDC), o
\ }
}
}

After the appropriate number of copies of the requested files are printed, the case ’
is terminated in the manner described above in the IDM_PRINTPLLPLOTS and
IDM_PRINTPBDPLOTS cases. .
//end the document ’ .'

EndDoc(pd.hDC);
DeleteDC(pd.RDC);
} »
if (pd.hDevMode != NULL) GlobalFree(pd.hDevMode);
if (pd.hDevNames {= NULL) GlobalFree(pd.hDevNames);
output_flag = temp_output_flag; D
break; }

The EOM_SAVEPROJECT case handles the File]Save Project main menu)
selection. If a project is currently open, it uses an OPENFILENAME structure and the ‘
GetSaveFileName functio: to call the Save common dialog box.

247 ®
® 4] @ L e ® o

' .‘ ‘
case IDM_SAVEPROJECT : {]
¢
' OPENFILENAME ofnn; llopenfilename structure used with
/] GetOpenFileName function
char szFile{256], //name and location of the file
// to open »
¢ szFileTitle[256), //name of file to open
szFilter{}= "PRJ Files (*. PRI)V0*.PRN", /filter for list box
FILE *project, //pointer to a file structure
' //if there is no project open, print a warning and terminate the case ’
if{!project_flag){
MessageBeep(MB_ICONEXCLAMATIONY;
' MessageBox(hWnd, "A project must be open in order to be saved.”, ’
"WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),
break; }
’ . //otherwise, process the request »

The case initializes the dialog box with the name of the currently open project in case the

user wishes to overwrite the project file. Alternatively, the user may input any acceptable

» T
‘ DOS filename. %
//zero the openfilename structure
memset(&ofn, 0, sizcoROPENFILENAME)),

(. /finitialize the necessary OPENFILENAME structure parameters ’

strepy(szFile, PROJECTFILE),

ofn.IStructSize . = sizeof{(OPENFILENAME),

ofn. hwndOwner = hWnd, [
¢ ofn.IpstrFilter = gzFilter;

ofn.IpstrFile = seFile;

ofn.nMaxFile = sizeof(szFile);

ofn.IpstrFileTitle = szFileTitle;

ofn.nMaxFileTitle = gizeof{szFileTitle);
. ofn.Flags = OFN_OVERWRITEPROMPTIOFN_HIDEREADONLY; »

//if the GetSaveFileName function is successful, execute the code in the braces

248

if (GetSaveFileName(&ofin)) {

If the GetSaveFileName function returns successfully, the file selected by the user

is opened with write access, the filename is written to the PROJECTFILE global character

array, and the new project file is written by calling the write_project_file function. The
new project file is then closed and the case is terminated.
//open the file indicated by the user
project = fopen(ofin. IpstrFileTitle,"w");
Ilcopy the filk title into the PROJECTFILE string
sprintf(PROJECTFILE, "%s",ofn.IpstrFileTitle);
Ihwrite the project file by calling the write_project_file function
write_project_file(project);
Jiclose the file
fclose (project);
, :
break; }
The next five cases respond to the Edit|Default Settings, Edit|Duct Settings,
Edit|/ABS Strength Settings, Edit|PBD Settings, and EditjPBD Skew/Rake Settings main

menu selections. Each case declares a pointer to a dialog procedure, DigProc.

case IDM_DEFAULTSETTINGS : {

DLGPROC DlgProc; //pointer to a dialog
procedure

The IDM_DEFAULTSETTINGS case displays a warning message if there is no
project open and terminates the case. If a project is open, the case calls the single or
multiple component Default Settings dialog box based on a test of LDEV. The case
terminates after the dialog box terminates.

//if no project is open, print a wanming message and terminate the case

249

0288 P ST e T LT T N A NSt

- A

.

¢ »
ffiproject_flag){ | ‘
o MessageBecp(MB_ICONEXCLAMATION); » ‘
N WARNING. M5, ICONSTOR |MB. OK | MB. TASKMODALY — (
break; }
) /icall the appeopriate Defalt Settings dialog bax, depending on the pumber »
1 of componcats
iLDEV <2){
' Disloghon(ghinsanss DEFAVLTISETIINGS" KWad, Digbragy > 1 & e ’
}
else{
e DigProc = (DLGPROC)MakeProcInstance((FARPROC) Default2SettingsDlgProc, ghlnstance); »

DlalogBox(ghlnshnce, "DEFAULT2SETTINGS", hWnd, DlgProc);

FreeProcInstance((FARPROC)DigProc),
e break;)
case IDM_DUCTSETTINGS : {
DLGPROC DigProc; //pointer to a dialog
) procedure b
The IDM_DUCTSETTINGS case displays a warning message if there is no
project open or if there is no duct in the open project and terminates the case. If a ducted
¢ project is open, the case calls Duct Settings dialog box. The case terminates after the
dialog box terminates.

Iif no project is open or there is no duct, print a warning message and
// terminste the case

if{!project_flagl(image_duct == 'N')ji(image_duct == ‘n’)){
MessageBeep(MB_ICONEXCLAMATION);
MessageBox(hWnd, "A project with a duct must be open in order to edit the \ »

e Duct Default Settings.”,
WARNING!, MB_ICONSTOP | MB_OK | MB_TASKMODALY);

250

dreak; }

¢ DigProc = (DLGPROC)MakeProcInstance((FARPROC)DuctSettingsDigProc, ghlnstance),
DialogBox(ghinstance, "DUCTSETTINGS", hWad, DigProc);
FreeProcinstance((FARPROC)DigProc);
break; } i
¢ case IDM_ABSRULES : {

DLGPROC DigProc; ' //pointer to a dialog
procedure

e

The IDM_ABSRULES case displays a warning message if there is no project open D
and terminates the case. If a project is open, the case calls ABS Rules Strength Settings
dialog box. The case terminates after the dialog box terminates.

if{!project_flag) {
MessageBeep(MB_ICONEXCLAMATION),
Mescachox(hWnd, "A project must be open in order to edit the ABS Rules \)
e Strength Calculation
"WARNING!", MB lCONS’I’OP | MB_OK | MB_TASKMODAL);,
break; } .
DigProc = (DLGPROC)MakeProcInstance((FARPROC)ABSDIgProc, ghlnstance), . T
L DialogBox(ghInstance, "ABSRULES", hWnd, DigProc);
FrecProclnstance((FARPROC)DigProc); '

break; }

. -‘ ~
e The IDM_EDITPBDSETTINGS case is analogous to the IDM_ABSRULES case. ’
case IDM_EDITPBDSETTINGS : {

DLGPROC DigProc; //pointer to a dialog ;
° procedure ’

if{!project_flag) {
MessageBeep(MB_ICONEXCLAMATION);

Wnd, "A project must be open in order to edit the PBD Settings.”, '
L "WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),

break, }

251

DigProc = (DLGPROC)MakeProcInstance((FARPROC)PBDSettingsDIgProc, ghinstance),
DialogBox(ghlnstance, "PBDSETTINGS", hWnd, DigProc);
FreeProclnstance((FARPROC)DigProc),

break; }

The IDM_EDITPBDSKEWRAKE case is analogous to the
IDM_DEFAULTSETTINGS case.
case IDM_EDITPBDSKEWRAKE : {

DLGPROC DigProc; //pointer to a dialog
procedure

ifproject_flag) {
MessageBeep(MB_ICONEXCLAMATION),

MessageBox(hWnd, "A project must be open in order to edit the PBD Skew and Rake values.”,
"WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL),

break; }

DigProc = (DLGPROC)MakeProcInstance{(FARPROC)SkewRake!DigProc, ghlnstance);
DialogBox(ghInstance, "SKEWRAKE1", hWnd, DigProc);
FreeProcInstance{((FARPROC)DIgProc);

ifl(LDEV>1){

DigProc = (DLGPROC)MakeProcInstance((FARPROC)SkewRake2DigProc, ghlnstance),

DialogBox(ghinstance, "SKEWRAKE2", hWnd, DigProc);
FreeProcInstance((FARPROC)DigProc);
}

break; }

The IDM_EDITPITCHROLLYAW case responds to a message sent by the
MDIChildPlotWndProc in response to a right mouse button double click on the Plot
Viewer window while a PBD plot is displayed. It calls the PBD Plot Geometry dialog box
and terminates after the dialog box terminates. The MDIChildPlotWndProc function will
be discussed in section C.2.3.

case IDM_EDITPITCHROLLYAW : {

252

'
DLGPROC DigProc; //pointer 10 a dialog
procedure
‘
DigProc = (DLGPROC)MakeProcinstance((FARPROC)PBDPR YDigProc, ghinstance);
DialogBox(ghinstance, "PBDPRY", h"Vad, DigProc);
FreeProcinstance((FARPROC)DigProc);
InvalideteRect(WPiotWad, NULL, TRUE);
‘ break;
}
The IDM_WRITEOUTPUT case responds to the main menu File]Write PLL
¢ Output File selection. If there is an open project and output available, the case allows the ’
user to select an output filename using the Save common dialog box.
. case IDM_WRITEOUTPUT : { }
OPENFILENAME ofn; /lopenfilename structure used with L
./ GetOpenFileName function b
char szFile[256)="*.0ut\0", //name and location of the file |
// to open ‘
. szFileTitle[256], /fame of file to open » ¢
szFilter{}= "OUT Files (*.0UT)W0*.0UTV"; /ffilter for list box
HFILE out; /Mandle to a file
{/if no project is open or there are no output files, print a warning ‘
‘ // and terminate the case . T
if{(!project_flag)j|!(access(“summary.out”, 0) == 0)){
MessageBeep(MB_ICONEXCLAMATION);
. MessageBox(hWnd, "A project must be open and output available o write an output file.”, »
"WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODALY);
break; } ;
/finitialize the OPENFILENAME parameters i
¢ ’
memset(&ofn, 0, sizcofOPENFILENAME)); p
P ofn. IStructSize = 5izeof(OPENFILENAME);, ‘
ofn.hwndOwner =hWnd; ¢
ofn.IpstrFilier = szFilter;
ofn. IpstrFile = s2File;

253

\
i.‘;
' b
>
v
£

ofn.ahMaxPlle = sizoof{s2Flic);

ofn. lpstrFileTide = g2FileTithe;

ofs.abMaxPilcTide = sizool{szPilcTitle);

ofa.Flags = OFN_OVERWRITEPROMPTIOFN_HIDEREADONLY;
(GetSaveFileName(&ofn)) {

Upon the successful return of the GetSaveFileName function, the case uses the _lcreat
function to open or create the file selected by the user. The _lcreat function receives the
address of the file title and a file attribute. In this case, if the file already exists it is opened
for reading and writing and truncated to zero length. If the file does not exist, it is created
with write access. The function returns a handle to the file.

//create an output file
out = _lcreat(ofin. IpstuFileTitle, 0);

The case then writes all of the available PLL output files into the specified file by calling
the write_output_file function, closes the file, and terminates the case.
Jcall the write_output_file fuction to write the output file
write_output_file(out);
{Iclose the overall output file
close(out);

break; }

If there are PBD output files available as indicated by the pbd_flag variable, the
IDM_WRITEPBDOUTPUT case responds to main menu File|Write PBD Output Files
selections by calling the write_pbd_files function. Otherwise, a warning message is
displayed and the case is terminated. The write_pbd_files function copies all of the
available PBD output files into files having the root name specified in the PBD Settings
dialog box and the appropmte extension.

case IDM_WRITEPBDOUTPUT : {

254

%4
'

ipbd_flag)
write_pbd_files();

© olee {
MessageBeep(MB_ICONEXCLAMATION),

0 MessageBox(hWad, "No PBD files to writ.”,
*WARNING!", MB_IOCONSTOP | MB_OK | MB_T4.5KMODAL),
}
break; }

¢ The IDM_EXIT case responds to main menu File{Exit selections and to messages
sent by the WM_DESTROY case in the FrameWndProc function. The function deletes
temporary files by passing the pll_files and pbd_files flags to the delete_files function and
¢ by individually deleting the files not deleted by the delete_files function.

case IDM_EXIT : {

//delete the temporary files

e delete_files(pll_files);
delese_files(pbd_files);

unlink("currl bid");

W A R 0 R AT L AR

3
>

. £
» .q] °) : ’
TR SR AR . TG - v P

L

:
:

iy -
R

[]

255

The IDM_EXIT case then frees the timer for use by other applications and sends a
request to the Windows™ environment to terminate the program. The case is then
terminated.

{/delete the timer
KillTimer(hWnd,ID_TIMER),

PostQuitMessage(0);
break; }

The IDM_ABOUT case calls the About dialog box and terminates when the dialog

box terminates.

case IDM_ABOUT : {

// this handles the About dialog box
DLGPROC DlgProc;
DigProc = (DLGPROC)MakeProcInstance((FARPROC)ABOUTDIgProc, ghinstance);
DialogBox(ghlnstance, "ABOUT", hWnd, DigProc);
FreeProcInstance((FARPROC)DIgProc);

break;

Messages not handled by a prior case in the switch are referred to the default
Windows™ frame procedure by calling the DefFrameProc function. The DefFrameProc
function receives a handle to the frame window, a handle to the client window, and
unsigned integer that specifies the message being sent, and 16 and 32 bit pa~ameters with
additional information that is a function of the message. The function processes the
message and returns the proc_using result, which is also a function of the message that is
sent.

256

.'i
i

dedanlt : {
DefPrameProc(hWad, AMDICliestWnd, WM_COMMAND, id, OL);
}

-
I —
®

257

APPENDIX C.2

The PLL MDI Child Window Procedure functions.

C2 The PLL MDI Child Windew Procedure functions.

Child windows in a MDI application receive messages in the same way as their
non-MDI application counterparts. The messages are not handled by the FrameWndProc
but rather by individual child window procedures. Normally there is one child window
procedure for each type of child window in a MDI application, and this is the case in PLL.
The MDIChildBladeWndProc, MDIChildWakeWndProc, MDIChildOutputWndProc, and :
MDIChildPlotWndProc functions will be described in this appendix. *

’
C.2.1 The PLL MDIChildBladeWndProc and MDIChildWakeWndProc functions.
The declarations of the MDIChildBladeWndProc and MDIChildWakeWndProc
functions are the same as those of the MainWndProc functions described in Appendices A d
and B and of the FrameWndProc function described in section C.1.2. Their operation is
also quite similar. Both of the child window procedures use switches to respond to
messages passed by the Windows™ environment as a result of user action. ’ ¢
Both the MDIChildBladeWndProc function and the MDIChildWakeWndProc
function respond to WM_PAINT commands. The MDIChildBladeWndProc function

responds simply by calling the paintbld function and returning zero, indicating that the
message was handled. The paintbld function receives the handle to the Blade Viewer
window and draws the blade and ring parameter plots on the window. Messages other
than WM_PAINT that are received by the Blade Viewer window are referred to the ’
default MDI Child window procedure, DefMDIChildProc.

LRESULT CALLBACK _export MDIChildBladeWndProc(HWND hWnd, UINT message, WPARAM .
wParam, LPARAM 1Param)
{

switch (message)

{

case WM_PAINT : { »

I/frespond to WM_PAINT messages by calling the paintbld function

259

/irefier messages not handled above to the default windows MDI child window procedure

return DefMDIChildProc(hWnd, message, wParam. [Param);

The response of the MDIChildWakeWndProc function to a WM_PAINT message

is the same as the MDIChildBladeWndProc function except that the paint_wake function

is called instead of the paint_bld function. The paint_wake function receives the handle to

the Wake Viewer window and draws the project wake profile on the window. If the
project has two components, the user may toggle between the wake profiles for the first

and second components by double clicking the left mouse button while the cursor is on the

Wake Viewer window. This action causes a WM_LBUTTONDBLCLK message to be
sent to the MDIChildWakeWndProc function.

LRESULT CALLBACK _export MDIChildWakeWndProc(HWND hWnd, UINT message, WPARAM
wParam, LPARAM {Param)

{

switch (message)
{
casc WM_LBUTTONDBLCLK : {

Upon receipt of a WM_LBUTTONDBLCLK message, the case tests the LDEV
integer variable to determine if the project is a single component project. If the current
project has only one component the case is terminated immediately by returning zero,
indicating to the Windows™ environment that the case was handled.

//if there is only one component terminate the case

if(LDEV==1) return 0;

260

.'i
G

If there is more than one component, a switch is used to toggle the
component_flag integer variable from zero to one or one to zero depending on its initial
state. The component_flag variable value controls the selection of the wake profile that
will be drawn by the paint_wake function. After this is done, the Invalidaten.ct function
is used to cause the Wake Viewer window to be redrawn since the data to be displayed on
the screen has changed. A value of zero is then returned to indicate that the case has been
handled.

//if there is more than one component, toggle the component_flag and repaint the screen
switch(component_flag)
{
case 0: { component_flag=1; break; }
case 1: { component_flag=0; break; }
}
InvalidateRect(hWnd, NULL, TRUE),

return 0;

case WM_PAINT : {
//respond to WM_PAINT messages by calling the paintwake function
paintwake(hWnd);

return 0;

As in the case of the MDIChildBladeWndProc function, if a message is not
handled by the switch, it is referred to the default MDI Child window procedure.

//refer messages not handled above to the default windows MDI child window
/I procedure

return DefMDIChildProc(hWnd, message, wParam, IParam);,

261

D B
]
D
' C.2.2 The PLL MDIChildOutputWndProc function.
) . The declaration and operation of the MDIChildOutputWndProc are similar to the »
D declaration and operation of the functions described in section C.2.1 above. It s,
however, a more complicated function due to the addition of three cases in the switch and
the large number of different output files that may be selected for viewing. »
LRESULT CALLBACK _export MDIChildOutputWndProc(HWND hWnd, UINT message, WPARAM
wParam, LPARAM [Param)
{ :witch (message) [
The first message handled in the MDIChildOutputWndProc function is the
WM_LBUTTONDBLCLK message. Double clicking the left mouse button on the »
Output Viewer window causes the display to index to the next available file. If there are
no output files to display, as indicated by the absence of the summary.out file, the case
o returns zero to indicate that the message was handled and takes no further action. »
case WM_LBUTTONDBLCLK : {
//if there is no summary out file there is no reason to change the output_flag
, /I s0 just terminate the case .
ifaccess("summary.out*, 0) 1= 0) |
retun 0;
1]
If there are output files to display, the case first resets the scroll bar position to the
top of the page so that the next file in the sequence will be displayed starting at the top.
] //set Scroll_Pos to zero so the new page will print at the top of the page »
// and update the scroll bar position
Scroll_Pos = 0;
SetScrollPos(hWnd, SB_VERT, Scroll_Pos, TRUE);
']
262
' »
!“M. S e o 0 , o | ® ® o o

Next, a switch is employed to determine which file is to be displayed based on
which file is currently displayed. The existing files are displayed in the following order.

summary.out.
detaill.out.

stress.out.
duct.geo.
fards.out.
NONAXi.cir.
nonaxi.for.
nonaxi.cmp.
nonaxi.har.
pbdout.ktq.

SRE0RNANE W=

- o

When the output_flag value has been indexed, the InvalidateRect function is used to cause

the screen to be repainted and the case is terminated.

switch(output_flag)
{

case summary: { output_flag = detailed1; break; }

//skip over detailed2 if there is only one component
case detailed]: { ffLDEV==]) output_flag = abs_rules_calc;
else output_flag = detailed2;
break; }

case detailed2: { output_flag = abs_rules_calc; break; }

casc abs_rules_calc: {
/igo to the duct geometry case if there is a duct.geo file -
if{access("duct.geo”, 0) == 0)
output_flag = duct_geometry;
//go to the downstream velocities case if there is a fards.out file

else
if{access(“fards.out”, 0) == 0)
output_flag = downstream_velocities;
//go to the non_axisym_cir case if there is a nonaxi.cir file

else
if{access("nonaxi.cir”, 0) == 0)
output_flag = non_axisym_cir;
else
//go to the pbdktq case if there is a pbdout.ktq file and the pbd_flag is set

if((pbd_fag)&&
access("pbdout ktq", 0) == 0)

263

e R R T Wmmww-1

P A

output_flag = pbdkiq;
l/otheswise go back to the summary case
else
output_flag = summary;
beeak;}
case duct_geometry: {
//go to the downstream velocities case if there is a fards.out file
if(access("fards.out”, 0) == 0)

output_flag = downstream_velocities;
//go to the non_axisym_cir case if there is a nonaxi.cir file
else

iflaccess("nonaxi.cir®, 0) == Q)
s output_flag = non_axisym_cir,

//go to the pbdktq case if there is a pbdout ktq file and the pbd_flag is set
if(pbd_flag)&&access("pbdout.kiq", 0) == 0)
output_flag = pbdktq;
//otherwise go back to the summary case
clse
output_flag = summary,

break;)

case downstream_velocities: {
//go to the non_axisym_cir case if there is a nonaxi.cir file
if{access("nonaxi.cir”, 0) = 0)
output_flag = non_axisym_cir;
else
//go to the pbdktq case if there is a pbdout.ktq file and the pbd_flag is set
if{(pbd_flag)&&access("pbdout.ktq", 0) = 0)
output_flag = pbdkiq;
//otherwise go back to the summary case
clse
output_flag = summary;

break; }

case non_axisym_cir: { output_flag = n-m‘_axisym_for; break; }
case mﬁ_mdwm_fon { output_flag = non_axisym_cmp, break; }
case non_axisym_cmp: { output_flag = non_axisym_har; break; }
case non_axisym_har: {

//go to the pbdktq case if there is a pbdout.kiq file and the pbd_flag is set
ifi(pbd_flag)&&access("pbdout.ktq", 0) == 0)

output_flag = pbdktq;
[/otherwise go back to the summary case
else

output_flag = summary;

» 7
)

break;}

case pbdkiq: { output_flag = summary; break; }
}

InvalidseRect(hWad, NULL, TRUE),

retum 0;

The first additional case in the MDIChildOutputWndProc function is the
WM_RBUTTONDBLCLK case. The WM_RBUTTONDBLCLK case responds to the
user double clicking the right mouse button on the Output Viewer window. This causes
the text_color flag to be indexed in a continuous loop from the default biue to green, to
red, to black, and back to blue as the user continues to double click the right mouse
button. It is accomplished with a switch similar to the one described in the)
WM_LBUTTONDBLCLK case above. After the text_color flag has been altered, the
InvalidateRect function is used to cause the screen to be redrawn and the case is
terminated by returning zero.

case WM_RBUTTONDBLCLK: {

//if the right mouse button is double clicked, the text_color is indexed
// by one increment, starting with blue and progressing through green, red,

// and black then back to blue
switch(text_color)
{ -
case blue: { text_color = green; break;
case green: { text_color = red; break; }
case red: { text_color = black; break; }
case black: { text_color = blue; break; }
}
//cause the screen to be repainted once the text_color has been indexed
InvalidateRect(thWnd, NULL, TRUE),
return O,
}

265

ﬁ
&
b

e

gt v

g

- a. o

".""ﬂ -

The other two new cases are the WM_VSCROLL and the WM_KEYDOWN

‘ cases. The first refers scroll bar messages to the WMV Scroll_Handler function and the »
second refers messages to the WMKeydown_Handler function. These functions will be
described later in this appendix.

. case WM_VSCROLL : »

{

return HANDLE_WM_VSCROLL(hWnd, wParam, IParam, WMVScroll_Handler);
}

‘ case WM_KEYDOWN : »
{
/lthis case handles keyboard entry
return HANDLE WM_KEYDOWN(hWad,wParam,|Param, WMKeydown_Handler),

The last case in the switch is the WM_PAINT case. This case passes the handle of
the Output Viewer window to the paintout function. The paintout function draws the

appropriate output file to the Output Viewer window device context.

casc WM_PAINT :
{
. paintout(hWnd); >’
return 0;
}
] ' »

If a message is not handled by one of the cases in the switch, it is referred to the default
MDI Child window procedure.

¢ return DefMDIChildProc(hWnd, message, wParam, [Param); »
}

C.2.3 The PLL MDIChildPlotWndProc function.

The MDIChildPlotWndProc is similar to the MDIChildOutputWndProc function
described in section C.2.2 above, but without the cases made necessary by the Output
Viewer window scroll bar.

LRESULT CALLBACK _export MDIChildPlotWndProc(HWND hWnd, UINT message, WPARAM
wParam, LPARAM [Param)

{

:witch (message)

The WM_LBUTTONDBLCLK case responds to the user double clicking the left
mouse button on the Plot Viewer window. This action causes the plot displayed to index
in a continuous loop through the available plots. This is more straightforward than the
Output Viewer case because there is a lower degree of variability in the plots available.

case WM_LBUTTONDBLCLK : {

//if there are no plots to draw and pbd has not been run, terminate the case

If there are no PLL and no PBD plots to draw, the case is terminated. Otherwise,
a switch is used to alter the plot_page variable value based on the plot currently displayed
and the plots available. The InvalidateRect function is then used to cause the screen to be
redrawn and the case is terminated. The available plots are displayed in the following

order:

1. PLL page 1.

2. PLL page 2.

3. PLL page 3.

4. PLL page 4.

5. PBD input blade B-spline control net and the resultant blade.

6. PBD output blade grid for each blade, centerbody, transition wake, and hub and
duct images as applicable.

7. velocities at the blade control points.

8. contour plot of the bound circulation strength.

9. radial circulation distribution.

10. circumferential mean velocity plot.

267

e AP et AR &twwmr;wmmrtmm.‘t}j
AR F_ N ‘ A

A .{':r:'.*r R

if(idraw_plot_flag && Ipbd_flag)
retum 0;
IAf the left mouse button is double clicked on the plot page, index through the pages
:witch(plot_p-a)
//plot_page values 0-3 cause pil plots to be drawn
case 0:{ plot_page = 1; break; }
case 1:{ plot_page = 2; break; }
case 2:{ plot_page = 3; break; }
/iif the pbd flag is set, index through the pbd plots
case 3.{ if(pbd_flag) plot_page = 4;
else plot_page =0; break; }
case 4:{ plot_page = 5; break; }
case 5:{ plot_page = 6; break; }
case 6:{ plot_page = 7; break; }
case 7:{ plot_page = 8; break; }
/A£ the pbdout.cmv file exists, sct plot_page to 9 and plot that file

// otherwise start over with case 0 if pll plots are to be drawn and case
1/ 4 if they are not to be drawn

case 8:{ if{access("pbdout.cmv”, 0) =0) plot_page=9;
else if{draw_plot_flag)plot_page = 0;
else plot_page = 4;break; }

//start over with case 0 if pll plots are to be drawn and case 4 if they are
// not to be drawn

e
InvalidateRect(hWnd, NULL, TRUE);
return 0;

}

The user calls the PBD Plot Geometry dialog box by double clicking the right
mouse button with the cursor on the Plot Viewer window while a PBD plot is displayed.
If a multiple component PLL plot is displayed, the WM_RBUTTONDBLCLK message
causes the plot displayed to index on a continuous loop between the component one plot,
the component two plot, and the combined plot.

268

" o

& afae

case WM_RBUTTONDBLCLK : {
/Kf the right mouse bution is double clicked oa the plot page and a pbd
// plot is displayed, send 3 message 10 the frame window 0 call the
// pbd pisch, roll, yaw dialog box

If the plot_page value is greater than three, then a PBD plot is being diplayed. The
SendMessage function is used to send a IDM_EDITPITCHROLLYAW message to the
FrameWndProc to cause the PBD Plot Geometry box to be called and the case is

terminated.

if{plot_page>3){
SendMessage(hFrameWnd, WM_COMMAND,IDM_EDITPITCHROLLYAW,
MAKELONG(0,0));
retum 0;
}

If the plot_page value is not greater than three, then LDEYV is tested. If the project is a
single component project the case is terminated. If the project has two components, then
the plot_component_flag is indexed on a continuous loop so that the component one, then
the component two, and then the combined component plot will be displayed. The screen
is then repainted and the case is terminated.
Ifif pil plots are being displayed and there is only one component, terminate the case

ifLDEV==1) return 0;

{ffor multiple components use the following switch to index through thé cases
// where component 1 is plotted, component 2 is plotted, and both are plotted

:wi&ch(pht_componem_ﬂag)
case 0: { plot_component_flag=1; break; }
case 1: { plot_component_flag=2; break; }
case 2: { plot_component_flag=0; break; }
}

//canse the screen to be repainted
InvalidateRect(hWad, NULL, TRUE);

retum 0;

269

o

- RIS R, TRt e L AP

PR SN

\1., v

7
£
iR
s
7

Y We—

¢ The WM_PAINT case is used to control the plots displayed on the Plot Viewer
window. A PAINTSTRUCT structure, a handle to & device context, a pointer to a file
structure, and a POINT structure are declared.

e case WM_PAINT : {
PAINTSTRUCT ps; Ifpaint structure
HDC PlotPaintDC; /Mandle of the device context
) FILE *plot, /fpointer 10 a file structure
POINT origin={320,240}; lorigin of plot in screen
!l logical coordinates
e

If a PLL plot page is to be displayed, the case passes the handle of the Plot Viewer
window to the paint_plot fuuction and terminates the case by returning zero.
/fif a pli page is to be ploted, call the paintplot function and terminate the case

if(plot_page<4){ paintplot(hWnd); return 0; }

If a PBD plot is to be drawn, the sine and cosine of the global pitch, roll, and yaw
. values are calculated. These values are used by the functions that draw the wireframe
| drawings using the PBD output files. The case then uses the BeginPaint function to
prepare the Plot Viewer window for painting.

ﬂ /icalculste the cosine and sinc of the roll, pitch, and yaw prior to painting a pbd page
j cos_roll =cos(roll);

sin_roll =sin(roll);

: c08_yaw =cos(yaw);

i sin_yaw =gin(yaw),

e cos_pitch =cos(pitch);

! sin_pitch =sin(pitch);

// create the device context
PlotPaintDC = BeginPaint(hWnd, &ps);

270

e ofe

.i
i

¢
The WM_PAINT case then uses a switch to control the files and functions used to
¢ draw output to the Plot Viewer window. The switch is identical to the switch used in the
IDM_PRINTPBDPLOTS case in the WMCommand_Handler function described in detail
in section C.1.3.
¢ Ihuse a switch o detcrmine which pbd output files are to be plotted and call the appropriate plot function
switch(plot_page){
case 4:(
¢ JAf the pbdout ibg file exists, open it and plot it
iffaccess(*pbdout.ibg", 0) == 0) {
plot = fopen(*pbdout.ibg”, *r"); ‘
¢ paint_graphs(PlotPaintDC, origin, plot, 0); .
fclose(plot), }
ifacoess(*pbdout ben®, 0) == 0) {
¢ plot = fopen("pbdout bsa”, *r"); 9 o
paint_graphs(PlotPaintDC, origin, plo, 1)
fclose(plot); }
. break; Q
}
case 5:{
o © iffacoess("pbdout.hub", 0) == 0) { ,li
| plot = open(“pbdout hub", *r; :
paint_hub(PlotPaintDC, origin, plot); 5
e flose(plot), } g
if(access("pbdout bdi*, 0) == 0) { !
plot = fopen(pbdout ", ")
o paint_graphs(PlotPaintDC, origin, plot, 1); ;}
fclose(ploy,) b

i‘f
b

271 ;

o "
g

? i

if{access("pbdout.obg”, 0) == 0) {
plot = fopen(“pbdout.obg", *1*);
paint_graphs(PlotPaintDC, origin, plot, 0);
fclose(plot); }

break;

}

case 6:{
iftaccess("pbdout.vcp”, 0) == 0) {
‘ plot = fopen("pbdout vep*, *r"); ’
paint_vep(PlotPaintDC, origin, plot);
fclose(plot);, }

A

case 7:{
//the circulation contour plot file may be either a .gsp or a .sol file
iftaccess("pbdout.gsp®, 0) = 0) {
plot = fopen(“pbdout.gsp”, *r*);
paint_gsp(PlotPaintDC, origin, plot);
felose(plot);) C
else if{access("pbdout.sol®, 0) == 0) {
plot = fopen(“pbdout.sol®, *r");
paint_gsp(PlotPaintDC, origin, plot);
fclose(plot), }
break;
}
case 8:{
//the radial circulation distribution file may be cither a .rdc or a .sgr file
‘ iftaccess("pbdout.rdc”, 0) == 0) { ’
plot = fopen(“pbdout.rdc”, *r");

27

paint_rdc(PlotPaintDC, plot);
fclose(plot), }
else if{access("pbdout sgr”, 0) == 0) {
plot = fopen("pbdout.sgr”, “r*);
paint_rdc(PlotPaintDC, plot);
fclose(plot); }
break;
}
case 9:(
if{access("pbdout.cmv”, 0) == 0) {
plot = fopen(“pbdout.cmv”, *1");
paint_cmv(PlotPaintDC, origin, plot);
fclose(plot); }
break;
}
}

The last action taken by the WM_PAINT case is to close out the paint command
using the EndPaint function and to return zero to indicate that the case was handled.
liclose out the paint command and terminate the case

EndPaint(hWnd, &ps);

return 0;
}

Messages not handled by the switch are referred to the default MDI Child window
procedure.

//mfumeuagesnmlmndledabwemthedcfmmwiwowshmlchﬂdwindowpmoedm

return DefMDIChildProc(hWnd, message, wParam, [Param);

273

APPENDIX C.3

The PLL dialog functions.

274

C.3 The PLL dialog functions.

The PLL Windows™ application makes extensive use of dialog boxes. Each
dialog box requires two support functions. The dialog box functions used in PLL are very
similar to those described in Appendices A.4 and B.2. The PLL dialog functions are listed
below and are described briefly by text interspersed through the code.

C.3.1 The Run Time Settings dialog box functions.

The WMRunTimeDIgCommand_Handler and RunTimeDIgProc are used to
initialize and then handle input from the Run Time Settings dialog box. The dialog box
makes use of edit controls for receiving numerical input, check boxes for setting options,

and auto-radio buttons for allowing the user to select from mutually exclusive options.

void WMRunTimeDigCommand_Hu:dler(HWND hDig, int id, HWND hwndCtl, UINT codeNotify)
{

char input[20] =""; //character string for i/o

switch(id)

fmse IDM_OKRUNTIME : {

HWND hCtrl; //Mandle to a dialog control
//read the data from the Run Time Settings dialog box

GetDlgltemText(hDlg, IDM_HORSEPOWER, input, 20);
horsepower = atof(input);

GetDlgltemText(hDig, IDM_THRUSTCOEFFICIENT, inpu€20);

thrust_coefficient = atof(input);

The procedure used to interrogate the auto-radio buttons and checkboxes is
slightly different than the procedure used in the previous programs. The previous
programs declared a DWORD variable and assigned the return value of the SendMessage
function to the variable. The variable was then tested using an if statement and the flag
value was set appropriately. In this case, the flags are set up so that a checked state

indicates a value of one for the flag and an unchecked state indicates a zero value. The

275

‘::_‘

ﬁ

return value from the SendMessage is cast as an integer value with the "(int)" that
precedes the function call and the value is assigned directly to the flag. This eliminates the ’
need to declare the DWORD and to perform the test using the if statement.

bCtrl = GetDlgltem(bDig, IDM_OPTIMIZERPM);
optimize_rpm = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL); »

bCtrl = GetDigltem(hDig, IDM_OPTIMIZEDIAMETER);
optimize_diameter = (int)ScndMessage(hCtrl, BM_GETCHECK, 0, OL);

hCurl = GetDigltem(hDilg, IDM_MAXIMIZETHRUST),
maximize_thrust = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

> Oge

»
hCtrl = GetDigltem(hDlg, IDM_NOOPTIONS);
no_runtime_options = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);
hCitrl = GetDigltem(hDlg, IDM_UNLOAD);
unload_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL), »

hCtrl = GetDigltem(hDlg, IDM_MATCHEAR),
match_EAR_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

hCtrl = GetDigltem(hDlg, IDM_USECURRBLD);
use_curr_blade = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

hCtrl = GetDIgltem(hDlg, IDM_NONAXISYM);,
eval_nonaxi_stator = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

hCtrl = GetDigltem(hDlg, IDM_WRITEPBDFILES);
| file_flag = (int)SendMessage(hCurl, BM_GETCHECK, 0, OL),

» ,-‘
The run_ok_flag variable is a global integer variable that is used to determine
whether the user selected the "OK" button or the "CANCEL" button. This allows the
program to terminate the File|Run case if the user changes his or her mind. »
run_ok_flag=0;
EndDialog(hDlg, 0),
break; ’
}
case IDM_CANCELRUNTIME : {
run_ok_flag=1;]
EndDialog(hDig, 0);

276

}

BOOL CALLBACK _export RunTimeDigProc(HWND hDig, UINT message, WPARAM wParam,
LPARAM IParam)

{
char input{20] =", //chasacter string for i/o
:whdl(m)

case WM_INITDIALOG : {
//print the current values in the Run Time Settings dialog box

sprintf{input, *%9. 1f", horsepower);
SetDigltemText(hDig, IDM_HORSEPOWER, input);

sprintfinput,*%4.3f" thrust_coefficient);

SetDigltemText(hDig,IDM_THRUSTCOEFFICIENT,input);

The functions in PLL make use of the CheckDigButton function to initialize check
boxes and auto-radio buttons. The CheckDigButton funttion receives a handle to the
dialog box, the identifier of the control, and an unsigned integer check state. The function
then checks or clears the control as indicated by the state. In these cases the value of the
flag is cast as an unsigned integer by using "(UINT)" preceding the variable. A value of
one causes the associated button to be initialized in a checked state, and a zero value

causes the button to be initialized in a cleared state.

CheckDigButton (hDig, IDM_OPTIMIZERPM, (UINT)optimize_rpm);
CheckDigButton (hDlg, IDM_OPTIMIZEDIAMETER, (UINT)optimize_diameter);
CheckDigButton (hDlg, IDM_MAXIMIZETHRUST, (UINT)maximize_thrust);
CheckDigButton (hDlg, IDM NOOP'I‘IONS (UINT)no_runtime_options),
CheckDigButton (hDig, lDM UNLOAD, (UINT)unload_flag);
CheckDigButton (hDig, lDM_MATCHEAR. (UINT)match_EAR _flag);
CheckDlgButton (bDlg, IDM_USECURRBLD, (UINT)use_curr_blade);
ChbeckDigButton (hDig, IDM_NONAXISYM, (UINT)eval_nonaxi_stator),
CheckDIgButton (hDlg, IDM_WRITEPBDFILES, (UINT)pbd_file_flag);
return TRUE;

}

case WM_COMMAND : {

return (BOOL)HANDLE_WM_COMMAND(hDIg, wParam, [Param,
WMRunTimeDigCommand_Handler);

277

§
v
E)
4
:
T
g
ki
%
F;
s

pIREE

L SRR

T TR

o v'i'::«uv: o

2 PR A TR NN R A AR L T

L J
;
:

¢]
)
) | |
))
C.3.2 The Expanded Area Ratio dialog box functions.
¢ The Expanded Area Ratio dialog box requires four separate functions. The o
WMEARI1DigCommand_Handler, WMEAR2DIgCommand_Handler, EARIDIgProc, and EAR2DIgProc
functions are shown below. Four functions are required because single and multiple
e component boxes are provided. The identifiers used in the single component case for ’
initializing the expanded area ratio value and receiving user input are also used for
component one in the multiple component case. This reduces the total number of
¢ identifiers required and allows for reuse of some of the code. ’
void WMEAR1DIgCommand_Handler(HWND hDig, int id, HWND hwndCtl, UINT codeNotify)
C
char input[20] =""; /lcharacter string for /o »
¢ switch(id)
{
case IDM_OKIEAR : {
GetDigltemText(hDlg, IDM_1EAR, input, 20);

o EAR|[0] = atof{input); 7
EndDialog(hDlg, 0); “
break;

_ }
* y ' »
BOOL CALLBACK _export EAR1DigProc(HWND hDIg, UINT message, WPARAM wParam,
LPARAM [Param)
{

° char input[20] = ""; //character string for i/o »
:wiwh(m)
case WM_INITDIALOG : {

o sprintf{input %S 47" EAR[O]): ’
SetDlgltemText(hDig,IDM_IEARDAT,input);

. 278 »

|
)
' sprintinput,"%3.41* EAR[0]);
) SetDigltcmText(hDig IDM_IEAR input);
: ¢ return TRUE;
b }
case WM_COMMAND : {
o return (BOOL)HANDLE_WM_COMMAND(RDIg, wParam, [Param,
WMEARDigCommand_Handler);
}
}
return FALSE;
}
¢ void WMEAR2DIeCommand_Handler(HHWND hDlg, int id, IWND hwndCtl, UINT codeNotify)
{ 5
char input[20] = **; licharacter string for i/o ¢
{ g
° case IDM_OK2EAR : { .
GetDigltemText(hDlg, IDM_1EAR, input, 20); g
EAR[0] = atoR(input); ;“
GetDigltemText(hDig, IDM_2EAR, input, 20); i
) o EAR[1] = atof{input); »
EndDialog(hDlg, 0);
} Lo
} k4
BOOL CALLBACK _export EAR2DIgProc(HWND hDIg, UINT message, WPARAM wParam,
LPARAM |Param) £
{ 4
e * . char input[20] =""; licharacter string for /o ’
case WM_INITDIALOG : {
sprintf{input, %S 4" EAR[O]); ‘
o SetDigltemText(hDlg,IDM_IEARDAT,input); »
sprintflinput, %5 41" EAR[1]); 2
SetDlgltemText(hDig,IDM_2EARDAT,input); b
sprintflinput, %S 4 EAR[O]); i
e SetDigltemText(hDig,IDM_1EAR input); .
speintf{input,"%5.4f" EAR[1]); ¥
SetDlgltemText(hDig,IDM_2EAR jinput);

i
v

o 279 b
v

EndDialog(hDig, 0);

»
)
}' retura TRUE;
D case WM_COMMAND : {
retura (BOOL)HANDLE_WM_COMMAND(hDig, wParam, IParam,
WMEAR2DigCommand Handler),
} : ’
return FALSE;
}
C.3.3 The Glauert Coefficients dialog box functions. »
The Glauert Coeflicients dialog boxes also require four functions to handle the
single and multiple component cases. Since the coefficient values and the associated user
input are handled as floating point arrays, the identifiers for the static text controls used to »
display the current values of the coefficients and the identifiers for the edit text controls
used to receive the unload fractions are defined sequentially. This allows the controls to
) be initialized and read using for loops and thereby minimizing the amount of code needed »
and the size of the executable file.
void WMGlauert1DigCommand Handler(HWND hDlg, int id, HWND hwndCtl, UINT codeNotify)
{ t
char input{20] = ""; //character string for i/o .4,1
case IDM_OKI1GLAUERT : {
int k; . /Nloop countet »
/Noop through and read all of the Glauert coefficient unload fractions
for(k=~0; k<NGC:k++) {
GetDigltemText(hDlg, IDM_1GLAUERT 14k, input, 20); »
GC_UNLOAD_FRAC[0}{k] = atof{input);
}
}
case IDM_CANCEL1GLAUERT : { »

}

mcumac_mm-mmwwmm;ummwpwm
LPARAM [Param)
{

.chr input{20] = **; Iicharacter string for i/o
i)

:ue WM_INITDIALOG : {

for(k=0; k<NGC:k++) {

sprintflinput,"%S.4f°, GC[O}(K]);
SetDigltemText(hDig IDM_1GC1+k,input);

}
return TRUE;
}
case WM_COMMAND : {

return (BOOL)HANDLE_WM_COMMAND(hDlg, wParam, {Param,
WMGlauert1DigCommand_Handler),
}

}

return FALSE;
}

void WMGlauert2DigCommand_Handler(HWND hDlg, int id, HWND hwndCtl, UINT codeNotify)
{

char input[20] = "*, /icharacter string for i/o
:wildt(id)

case IDM_OK2GLAUERT : § -

int k; /Noop counter

/AoopthmghandnndaﬂoﬂheGhueﬂmeﬁdemnﬂoadﬁaeﬁomfmb«heomponems
for(k=0; k<NGC:k++) {

GetDigltemText(hDig, IDM_IGLAUERT1-+k, input, 20);
GC_UNLOAD_FRAC{0}[k] = atof(input);

GetDigltemText(hDlg, IDM_2GLAUERT]-+k, input, 20);
GC_UNLOAD_FRACH1}{k] = atof{input);

}

281

]

T e e st 8 Ddiaddac s o gt o 20

>

BOOL CALLBACK _export Glaues2DigProc(HWND hDlg, UINT message, WPARAM wParam,

LPARAM [Param)
{
char input{20] = "*; //character string for i/o
int k
switch(message)

{
case WM_INTTDIALOG : {

for(k=0; k<NGC:k++) {

sprintf{input,"%3.4£",GC[0] (k]);
SetDigltemText(hDig,IDM_1GC1+k,input);

sprintf{input,"%3.41" GC[1) [k});
SetDigltemText(hDlg,IDM_2GC1+k,input);

}

retumm TRUE;
}

case WM_COMMAND : {
return (BOOL)HANDLE WM_COMMAND(hDlg, wParam, [Param,
WMGlauert2DigCommand_Handler);
}

return FALSE;

C.3.4 The PBD Skew/Rake Settings dialog box functions.

The PBD Skew/Rake Settings dialog boxes also require four functions. In this
case, however, the first two functions initialize and retrieve data from the component one
box and the last two functions initialize and retrieve data from the component two box.
These functions, like the Glauert Coefficients functions, make use of the sequential nature
of the data by using for loops and sequentially defined identifiers. They are also coded to
allow the user to cause the Command_Handler functions to calculate skew and/or rake

282

7
.

values for intermediate radii by supplying hub and tip skew and/or rake values and
¢ checking the appropriate box(es).

void WMSkewRake 1DigCommand_Handler(HWND hDlig, int id, HWND hwndCti, UINT codeNotify)
{
¢ char input{20] = **; //character string for i/o
HWND hCirl; /Mandle 10 a dialog
coatrol
:wi\eh(id)
case IDM_OKISKEWRAKE : {
o intk;

{Noop through and read all of the skew and rake inputs for component #1
for(k=0; k<MRPIN[0};k++) {

o GetDigltemText(hDig, IDM_ISKEW1+k, input, 20);
pbd_skew[k][0] = atof{input);

GetDigltemText(hDig, IDM_IRAKE+k, input, 20),
pbd,_rake(k][0) = atofinput) :
] } , P«

hCtrl = GetDigltem(hDlg, IDM_LINEARSKEW]1),
linear_skew_flag[0] = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

hCtrl = GetDigitem(hDlg, IDM_LINEARRAKEI); ;
¢ linear_rake_flag[0] = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL); » 4

If the linear_skew_flag was set by the user action of checking the "Use Linear
Skew" check box, the program uses a for loop to calculate the skew value at each

¢ intermediate radius by interpolating between the hub and tip values.
/if the lincar skew flag is set for component #1, calculate a linear skew distribution for component #1 .
¢ if(linear_skew_flag[0]) ’
for(k=1;k<MRPIN[0}-1;k++) .
pbd_skew{k}[0)=pbd_skew([0]{0]+(pbd_skew{MRPIN[0]-1]{0]-pbd_skew]0]{0]) ;
0 *(XRPIN[k][0)-XRPIN[0][0])/(XRPIN[MRPIN([O0]-1}{0]- »
XRPIN[0]{0]); L
283 :
. »

PSP

The same process is used for the rake settings.
/AL the lincar rake fiag is set for compoacat #1, calculate 2 lincar rake distribution for component #1
ilinear_rake_flag{0])
for(k=1;k<MRPIN[0}-1.k++)
pbd_rake(k][0}=pbd_rake{0][0}+(pbd_rake{MRPIN[0}-1}{0}-pbd_rake{0}{0])

*(XRPIN[k][0}-XRPIN[0}[O]/(XRPIN[MRPIN|[0}-1}{0}-
XRPIN[O}(0]):

}
case IDM_CANCELISKEWRAKE : {
EndDialog(hDig, 0);
break;

}
}

BOOL CALLBACK _export SkewRake1DigProc(HWND hDIg, UINT message, WPARAM wParam,

LPARAM [Param)
{
char input[20]) = "%, I/character string for i/o
int k;
switch(message)

{
case WM_INITDIALOG : {

for(k=0; k<MRPIN[0]:k++) {

sprintf{input,~%3.2f" XRPIN[k]{0]);
SetDigitemText(hDig,IDM_IRADIUS1+k,input);

sprintflinput,*%5.21",pbd_skew[k][0});
SetDigltemText(hDig,IDM_1SKEW 1-+k,input);

sprintf{input,“%3.2f",pbd_rake(k][0]);
SetDigltemText(hDig,IDM_IRAKE1+k,input);

}

CheckDigButton (bDlg, IDM_LINEARSKEW1, (UINT)lincar_skew_flag[0]) ;
CheckDigButton (hDig, IDM_LINEARRAKE!, (UINT)linear_rake_flagf0]) ;

return TRUE;

case WM_COMMAND : {

284

-

return (BOOL)HANDLE_WM_COMMAND(hDig, wParam, [Param,
WMSkewRake1DigCommand_Handles);
}

}
retura FALSE;

¢ The process is the same for the component two functions.
:ouwmmm;cm_ma{wmmumuﬂwmmummfy)
char inpufj20) = **; //character string for /o
HWND MCut;
?mch(id)
case IDM_OK2SKEWRAKE : {
itk
¢ for(k=0; k<MRPIN[1];k++) {

GetDigltemText(hDig, IDM_2SKEW1+k, input, 20);
pbd_skew{k]{1] = atofinput),

. GetDigltemText(hDig, IDM_2RAKEI1-+k, input, 20);
pbd_rake{k][1] = atof(input);

}

o hCtrl = GetDigltem(hDlg, IDM_LINEARSKEW?2); ’1
linear_skew_flag[1] = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL); 4

hCtrl = GetDigltemy(hDlg, IDM_LINEARRAKE2);
linear_rake_flag[1] = (int)SendMessage(hCtri, BM_GETCHECK, 0, OL);

¢« ifflinear_skew_flag{1]) ?
for(e=1:k<MRPIN[1}-Lk++)

pbd_skew(k]{ 1}=pbd_skew{0]{1]+(pbd_skew[MRPIN[1]-1]{1]-pbd_skew[0]{1]) ;1

. *(XRPIN[K]{ 1]-XRPIN[O]{ 1]/(XRPIN[MRPIN{1]-1][1]- »
XRPIN[OI(1]); ;.

e

iRftincar_rake_flag(1])

i

. for(k=1;k<MRPIN[1}-L:k++) b
pbd_rakefk]{1]=pbd_rake{0]{1}+(pbd_rake[MRPIN{1]-1){1}-pbd_rake[0](1]) f*

i

i

o ' 285 p
E

iy

*(XRPIN[k][1}-XRPIN[0}{ 1]/(XRPIN[MRPIN[1]-1}{1}-

XRPIN[O}{1D:

BOOL CALLBACK _export SkewRake2DIgProc(HWND hDlg, UINT message, WPARAM wParam,

{

}

LPARAM [Param)
char input20] = "% /Icharacter string for i/o
int k
?ritdn(m)
case WM_INITDIALOG : {
for(k=0; k<MRP|N[l];k""+) {

sprintfinput,*%5.2f", XRPIN[K]{1]);
SetDigltemText(hDig, IDM_2RADIUS1+k input);

sprintf{input, "%S5.2f",pbd_skew[k){1]);
SetDigltemText(hDlg,IDM_2SKEW 1+k,input);

sprintf{input,“%43.2f",pbd_rake{k]{1]);
SetDigltemText(hDig,IDM_2RAKE+k,input);

}

CheckDlgButton (hDlg, IDM_LINEARSKEW?2, (UINT)linear_skew_flag{1]) ;
CheckDigButton (hDlg, IDM_LINEARRAKE?, (UINT)linear_rake_flag[1]) ;

return TRUE;
}

case WM_COMMAND : {

return (BOOL)HANDLE WM_COMMAND(hDIg, wParam, [Param,
WMSkewRake2DIgCommand_Handler),
}

}
retumn FALSE;

C.3.5 The Steepness dialog box functions.

286

o

@ ofe

The single and multiple component Steepness dialog boxes also use four functions.

The boxes are used to provide data to the user so that the exponents used to unload
components may be selected. The data input using these dialog boxes is then used to
calculate values used to initialize the Unload Coefficients dialog boxes.

void WMSteep1DigCommand Handler(HWND hDlg, int id, HWND hwndCtl, UINT codeNotify)
{

char input{20] = **; I/character string for i/o
:witch(id)

case IDM_OKISTEEP : {

GetDigltemText(hDig, IDM_HUBSTEEPNESSI, input, 20);
bub_steepness{0] = atoi(input);

GetDigltemText(hDlg, IDM_TIPSTEEPNESS], input, 20);
tip_steepness{0] = atoi(input);

}
case IDM_CANCELISTEEP : {
EndDialog(hDig, 0);
break;

}
}

BOOL CALLBACK _export Steep1DigProc(HWND hDlg, UINT message, WPARAM wParam,
LPARAM |Param)
{

char input{20] =""; //character string for i/o
switch(message)
{

case WM_INITDIALOG": {

sprintRinput,“%3.4£", hub_circ[0]);
SetDigltemText(hDig,IDM_HUBCIRC],input);

sprintfiinput,"%S5.4f",hub_radius[0});
SetDigltemText(hDlg, IDM_HUBRADIUS1,input);

sprintf{input,"%3.4f" tip_circ{0]);
SetDigltemText(hDlg,IDM_TIPCIRC],input);

sprintf{input,"%35.4{" tip_radius|0});
SetDIgltemText(hDlg,IDM_TIPRADIUS|, input);

return TRUE;

287

TR

» o

QP o

}
cast WM_COMMAND : {
return (BOOL)HANDLE_WM_COMMAND(hDIg, wParam, [Param,

WMSteep1DigCommand_Handler);
}

}

return FALSE;
} |
void WMSteep2DigCommand_Handler(HWND hDlg, int id, HWND hwndCtl, UINT codeNotify)
{

char input{20] ="*; {/character string for i/o

switch(id) »

{
casc IDM_OK2STEEP : {

GetDigltemText(hDig, IDM_HUBSTEEPNESS, input, 20);
hub_steepness[0] = atoi(input);

GetDigltemText(hDlg, IDM_TIPSTEEPNESS]|, input, 20); »
tip_steepness|0} = atoi(input),

GetDigltemText(hDlg, IDM_HUBSTEEPNESS?2, input, 20),
hub_steepness[1] = atoi(input);

GetDigltemText(hDig, [DM_TIPSTEEPNESS2, input, 20); > O
tip_steepness{ 1] = atoi(input);

}
case IDM_CANCEL2STEEP : {

» , T
EndDialog(hDlg, 0); '
break;
) }
-
‘ } ' []
BOOL CALLBACK _export Steep2DligProc(HWND hDlg, UINT message, WPARAM wParam,
LPARAM [Param)
{
' char input{20] =", {/character string for i/o »

switch(message)
{
case WM_INITDIALOG : {

sprintf{input,"%S5.4f" hub_circ[0]);
' SetDigltemText(hDlg,IDM_HUBCIRC], input); »

sprintfinput, "%S.4f" hub_radius{0]);

288

SetDigitemText(hDig,IDM_HUBRADIUS1,input);

sprintf(input,*%S.40 tip_circ[0});
SetDigltemText(hDlg,IDM_TIPCIRC1,input);

sprintRinput, *%5.4f* tip_radius{0]);
SetDigltemText(hDig,IDM_TIPRADIUS, input);

sprintf{input, “%S3 41", hub_circ{1]);
SetDigltemText(hDig,IDM_HUBCIRC2,input);

sprintf{input, "%S.4*,hub_radius{1]);
SetDigltemText(hDlg. IDM_HUBRADIUS2,input);

sprintf{input, “%S.4f" tip_circ[1]);
SetDigltemText(hDig,IDM_TIPCIRC2,input);

sprintf{input,*%S5.4f" tip_radius[1]);
SetDigltemText(hDig,IDM_TIPRADIUS2,input),

return TRUE;
}

case WM_COMMAND : {

return (BOOL)HANDLE_WM_COMMAND(hDlg, wParam, IParam,
WMSteep2DlgCommand_Handler);

}
return FALSE;

@
’.

@®
.‘-
»
»
[] o

L Y

C.3.6 The Unload CoefTicients dialog box functions.
The four functions that initialize and retrieve data from the Unload Coefficients
dialog boxes are shown below.
void WMCoeflicient1DIlgCommand_Handler(HWND hDlg, int id, HWND hwndCtl, UINT codeNotify)
{ char inputf20] = ",
switch(id)
t{asc IDM_OK1COEFFICIENT : {

I/character string for i/o

GetDigltemText(hDig, IDM_HUBCOEFFICIENT, input, 20);
hub_coefficient{0] = atof(input);

GetDigltemText(hDlg, IDM_TIPCOEFFICIENT], input, 20);

289

tip_coefficient{u] = atofinput),

}
case [DM_CANCEL1COEFFICIENT : {
EndDialog(hDig, 0);
break; »
}

}

BOOL CALLBACK _export Cocfficientl DigProc(HWND hDlg, UINT message, WPARAM wParam,
LPARAM [Param) »
{

char input[20] ="*; //character string for /o
:witch(mse)
case WM_INITDIALOG : { »

sprintf{input,"%4.3f*, GNHC[0]);)
SetDigltemText(hDlg,IDM_HUBUNLOADPERCENT 1,input);

sprintRinput,“%4.3f,GNTC(0]); » ©
SetDigltemText(hDlg, IDM_TIPUNLOADPERCENT 1, input);

return TRUE;
}

case WM_COMMAND : { b’
return (BOOL)HANDLE_WM_COMMAND(DIg, wParam, [Param, '
WMCoefficient1DigCommand_Handler);
}
}

return FALSE; »
; ‘

void WMCocfficient2DlgCommand_Handler(HWND hDlg, int id, HWND hwndCtl, UINT codeNotify)

{
char input[20] = **; /Icharacter string for i/o

:Wiid!(id) »
case IDM_OK2COEFFICIENT : {

GetDightemText(hDig, IDM_HUBOOEFFICIENT}, input, 20);
bub_coefficient[0] = atof{input);

GetDigltemText(hDig, IDM_TIPCOEFFICIENT!, input, 20);
tip_coeflicient{0] = atof{input),

290

@
GetDigitemText(hDlg, IDM_HUBCOEFFICIENT?, input, 20); . ‘
hub_cocfficicnt(1] = atoRinput); @
GetDigltemText(hDlg, IDM_TIPCOEFFICIENT?, input, 20); .
tip_coefficient{1] = atofinput), , @
)
case IDM_CANCEL2COEFFICIENT : { .
EadDialog(hDlg, 0);
break;
}
}
} .
BOOL CALLBACK _export Coefficient2DIgProc(HWND hDIg, UINT message, WPARAM wParam,
LPARAM IParam)
{
char input{20] = ""; //character string for i/o »

;witch(mse)
case WM_INITDIALOG : {

sprintf{input,"%4.3*, GNHC{0]), »)
SetDigitemText(hDig, IDM_HUBUNLOADPERCENT L.input);

sprintf{input,"%4.3f* GNTC[O]);
SetDlgltemText(hDig, IDM_TIPUNLOADPERCENT!, input);

sprintf{input,*%4.3f", GNHC{1]); b’
SetDigltemText(hDig,IDM_HUBUNLOADPERCENTZ2,input); .

sprintfinput, "%4.3f* GNTC{1]);
SetDigltemText(hDig,IDM_TIPUNLOADPERCENT2, input);

return TRUE;
}

case WM_COMMAND : {

return (BOOL)HANDLE_WM_COMMAND(hDIig, wParam, [Param,
WMCoefficient2DIgCommand_Handler); »
) ,

}
return FALSE;
}

C.3.7 The Default Settings dialog box functions. »

291

The four functions that initialize and retrieve data from the Default Settings dialog
boxes are shown below.

void WMDefault1SettingsDigCommand Handler(HWND hDlg, int id, HWND hwndCtl,
¥ T codeNotify)
{

char input[2:. . //character string for i/o »
switch(id)

{
case IDM_OKDEFAULTISETTINGS : {
HWND hCtrl;

GetDigltemText(hDig, IDM_CLMAX, input, 20);

CLMAX = atof(input);

GetDigltemText(hDig, IDM_TCHDMAX, input, 20);

TCHDMAX = atof{input);

GetDligltemText(hDlg, IDM_TTIP, input, 20);

TTIP = atof{input),

GetDigltemText(hDlg, IDM_NPANEL, inpu*

NPANEL = atoi(input);

GetDigltemText(hDig, IDM_CDCON, input, 20);

CDCON = atof{input);

GetDigltemText(hDig, IDM_RHVOR, input, 20);

RHVOR = atof{input);

GetDigltemText(hDlg, IDM_HUBCHORD, input, 20); ’ ',1
HUBCHD{0] = atof{input); ;
GetDigltemText(hDlg, IDM_PL1, input, 20);

PL1 = atof{input);

hCtrl = GetDigltem(hDig, IDM_WAKEALIGNMENTFLAG);

wake_alignment_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

hCtrl = GetDigitem(hDig, IDM_CIRCOPTFLAG),
circulation_optimization_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

hCtrl = GetDigltem(hDig, IDM_CHORDCOPTFLAG);
chord_optimization_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL),

hCtrt = GetDigltem(hDlg, IDM_EMPIRICALVCDFLAG);
empirical_vcd_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

292

}

BOOL CALLBACK _export Default] SertingsDigProc(HWND hDlg, UINT message, WPARAM wParam,

{

case IDM_CANCELDEFAULTISETTINGS : {
EadDialog(hDig, 0);

break;

}

LPARAM IParam)

char input{20] = "*; //character string for i/o
switch(message)

{

case WM_INITDIALOG : {

sprintRinput,"%3.4",CLMAX),
SetDigltemText(hDlg,IDM_CLMAXinput);

sprintfinput,"%5.41", TCHDMAX);
SetDigltemText(hDig, IDM_TCHDMAX input);

sprintf{input,“%S5 41", TTIP);
SetDigltemText(hDig,IDM_TTIP,input);

sprintfinput,"%d",NPANEL);
SetDigltemText(hDlg, IDM_NPANEL input);

sprintf{input,*%5.4f",CDCON);
SetDigltemText(hDig,IDM_CDCON, input);

sprintf(input,*%S5.4f" RHVOR),
SetDigltemText(hDig,IDM_RHVOR, input);

sprintf{input,"%S.4f" HUBCHD{0]);
SetDigitemText(hDig,IDM_HUBCHORD,input);

sprintf(input,*%5.4f" PL1);
SetDigltemText(hDig,IDM_PL1,input);

CheckDigButton (bDig, IDM_WAKEALIGNMENTFLAG, (UINT)wake_alignment_flag) ;
CheckDigButton (hDig, IDM_CIRCOPTFLAG, (UINT)circulation_optimization_flag) ;
CheckDigButton (hDlg, IDM_CHORDCOPTFLAG, (UINT)chord_optimization_flag) ;
CheckDigButton (bDig, IDM_EMPIRICALVCDFLAG, (UINT)empirical_vcd_flag) ;

return TRUE;
: }

case WM_COMMAND : {

return (BOOL)HANDLE_WM_COMMAND(hD!g, wParam, [Param,
WMDefault1SettingsDigCommand_Handler);
}

293

5

:
4
o
%

o

= -‘-..":;.w o

= AL e I N TR

return FALSE;
}

void WMDefault2SettingsDigCommand Handles(HWND hDlg, int id, HWND hwndCu, UINT
codeNotify)

{
char input{20] = *"; {/character string for i/o
switch(id) »
{
case IDM_OKDEFAULT2SETTINGS : {
HWND hCrd;
GetDigltemText(hDlg, IDM_CLMAX, input, 20);
CLMAX = atofinput); ’

GetDigltemText(hDig, IDM_TCHDMAX, input, 20);
TCHDMAX = atof{input);

| 4
, ®
®
®

GetDlgltemText(hDig, IDM_TTIP, input, 20);
TTIP = atof(input); ’

GetDigltemText(hDlg, IDM_NPANEL, input, 20);
NPANEL = atoi(input);

GetDigltemText(hDig, IDM_CDCON, input, 20);
CDCON = atoffinput); > o

GetDigltemText(hDig, IDM_RHVOR, input, 20);
RHVOR = atof{input);

GetDigltemText(hDig, IDM_HUBCHORDY], input, 20); ¥
HUBCHD{0] = atof{input), ’ i

GetDigltemText(hDig, IDM_HUBCHORD?, input, 20);
HUBCHD{1] = atof(input);

GetDigitemText(hDig, IDM_PL1, input, 20); -~~~
PL1 = atof(input); »

GetDigltemText(hDig, IDM_PL2, input, 20);
PL2 = atof{input);

bCtrl = GetDiglteny(hDlg, IDM_WAKEALIGNMENTFLAG);
wake_alignment_flag = (int)SendMessage(hCtrl, BM_GETCHECK. 0, 0L); »

bCtrl = GetDigltem(hDlg, IDM_CIRCOPTFLAG);
circulation_optimization_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

hCtrl = GetDigltem(hDig, IDM_CHORDCOPTFLAG);
chord_optimization_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL); »

bCiri = GetDigltem(hDlg, IDM_EMPIRICALVCDFLAG);

294

: @
empirical_vod_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL); : .
hCirl = GetDigltem(hDig, IDM_CONRATTLAG); ‘ o .
contraction_ratio_flag = (int)SendMessage(bCtrl, BM_GETCHECK, 0, OL);

If the contraction_ratio_flag is not set, then the contraction ratio is set to the value

entered by the user. Otherwise, the default value is used. 5 .

if{1contraction_ratio_flag) {

GetDigltemText(hDlg, IDM_CONRAT, input, 20);

CONRAT = atof{input);
) ’ '
}
case [DM_CANCELDEFAULT2SETTINGS : {
EndDialog(hDlg, 0); ’ ‘
break;
}
}
} [] . '
BOOL CALLBACK _export Default2SettingsDigProc(HWND hDlg, UINT message, WPARAM wParam,
LPARAM IParam)
{
char input[20]) =""; {/character string for i/o :
switch(message) - ‘
{ ,
case WM_INITDIALOG : {
sprintf{input,"%5.41",CLMAX);,
SetDigltemText(hDig,IDM_CLMAX input);
sprintf{input,"%5 41", TCHDMAX), . '
SetDigltemText(hDig,IDM_TCHDMAX input);
sprintRinput,“%S5.4f*, TTIP);
SetDigltemText(hDlg,IDM_TTIP,input);
sprintflinput,*%d" NPANEL), ’ '
SetDigltemText(hDlg,IDM_NPANEL,input);)
sprintfinput,*%5.4f",CDCON);
SetDigltemText(hDig,IDM_CDCON, input); Q
sprintf{input, %5 4" RHVOR); . '
SetDigltemText(hDlg,IDM_RHVOR, input);
295 "
(] {
® . e o ° ° o o ©®
- GO oo hiohnn oo dsntietanitnsnnen NSt ahsnss btttk O bt

C3s8

speintf(input, “%S.4f" HUBCHD{0]);
SetDigltemText(hDig, IDM_HUBCHORD1, input);

sprintRinput, "%S.4f* HUBCHDY{1]);
SetDigltemText(hDig, [DM_HUBCHORD?,input);

sprintf{input,“%5.4f" PL1);
SetDigltemText(hDig iDM_PL1,input);

sprintR{input,"%S.41* PL2),
SetDigltemText(hDig, IDM_PL2,input);

sprintfinput, "%3.4f", CONRAT),
SetDigltemText(hDig,IDM_CONRAT,input);

CheckDigButton (hDig, IDM_WAKEALIGNMENTFLAG, (UINT)wake_alignment_flag);
CheckDlgButton (hDlg, IDM_CIRCOPTFLAG, (UINT)circulation_optimization_flag);
CheckDigButton (hDlg, IDM_CHORDCOPTFLAG, (UINT)chord_optimization_flag);
CheckDigButton (hDlg, IDM_EMPIRICALVCDFLAG, (UINT)empirical_vcd_flag);
CheckDlgButton (hDlg, IDM_CONRATFLAG, (UINT)contraction_ratio_flag);

return TRUE;
}

case WM_COMMAND : {
return (BOOL)HANDLE_WM_COMMAND(hDIlg, wParam, [Param,
WMDefault2SettingsDigCommand_Handler);
}

return FALSE;

The Duct Settings dialog box functions.
The Duct Settings dialog box is handled by the

WMDuctSettingsDigCommand_Handler and the DuctSettingsDIigProc functions shown

below. No new concepts are used in these functions.

void WMDuctSettingsDlgCommand_Handler({WND hDlg, int id, HWND hwndCtl, UINT codeNotify)

{

char input[20] =""; //character string for i/o
switch(id)

{

case IDM_OKDUCTSETTINGS : {

HWND hCtrl,

hCtrl = GetDigltem(hDig, IDM_DUCTMEANLINEFLAG),
duct_mean_line_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL),

296

@

}

hCtrl = GetDigltem(hDig, IDM_DUCTRINGVORTFORCESFLAG);
duct_ring_vortex_forces_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

hCtrl = GetDigltem(hDig, IDM_DUCTFORCESFLAG);
duct_forces_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

hCtrl = GetDigltem(hDig, IDM_ESTIMATEDUCTCIRCULATION);
estimate_duct_circulation_flag = (int)SendMessage(hCtri, BM_GETCHECK, 0, OL);

GetDigltemText(hDig, IDM_GAPFAC, input, 20);
GAPFAC = atof{input);

GetDigltemText(hDig, IDM_PROPDUCTTHRUSTRATIO, input, 20);
propeller_duct_thrust_ratio = atof{input);

GetDigltemText(hDlg, IDM_DUCTCIRCULATION, input, 20);
estimated_duct_circulation = atof{input);

}
case IDM_CANCELDUCTSETTINGE : {
EndDialog(hDlg, 0);
break;
3

BOOL CALLBACK _export DuctSettingsDIgProc(HWND hDIg, UINT message, WPARAM wParam,

{

LPARAM IParam)
char input{20] =""; //character string for i/o
switch(message)
{
case WM_INITDIALOG : ¢

sprintfinput,"%4.31",GAPFAC);
SetDigltemText(hDig,IDM_GAPFAC,input);

CheckDigButton(hDig,IDM_DUCTMEANLINEFLAG, (UINT)duct_mean_Line_flag);

CheckDigButton{hDig,IDM_DUCTRINGVORTFORCESFLAG,
(UINT)duct_ring_vortex_forces_flag);

CheckDigButton (hDlg,IDM_DUCTFORCESFLAG,(UINT)duct_forces_flag);

CheckDigButton(hDlg,IDM_ESTIMATEDUCTCIRCULATION,
(UINT)estimate_duct_circulation_flag),

sprintf{input,"%3.2f" propeller_duct_thrust_ratio);
SetDlgltemText(hDig,IDM_PROPDUCTTHRUSTRATIO, input);

sprintf{input,*%7.6f" estimated_duct_circulation);

297

SetDigltemText(hDig,IDM_DUCTCIRCULATION, input),

return TRUE;

)]
case WM_COMMAND : (
return (BOOL)HANDLE_WM_COMMAND(hD{g, wParam, [Param,
WMDuctSettingsDigCommand_Handler); »
}
}
return FALSE;
}
C.3.9 The PBD Settings dialog box functions. ’
The next two functions support the PBD Settings dialog box.
void WMPBDSettingsDigCommand_Handler(HWND hDlg, int id, HWND hwndCtl, UINT codeNotify)
{
char input[81] =", llcharacter string for i/ »
:witch(id)
case IDM_OKPBDSETTINGS : {
HWND hCud; »
GetDigltemText(hDlg, IDM_PBDRUNTITLE, input, 81);
sprintRpbd_run_title, input);
GetDigltemText(hDlg, IDM_PBDOUTPUTROOT, input, 9);
sprintf(pbd_output_root, input); »"
The PBD Settings makes use of auto-radio buttons in receiving input regarding the
blade grid spacing, the component for which to write files, the run mode, and the plot
mode. Unlike previous cases, the effect of the input is not to cause a flag to be set or »
cleared. In these cases the choice of a particular selection causes a variable to have a
specific value. This requires the use of the if statement to determine the state of the
buttons and assign the values of the variables. »
hCirl = GetDigltem(hDig, IDM_UNIFORM);
if (SendMescage(hCtrl, BM_GETCHECK, 0,0L)) ISPN=0;
bCtrl = GetDigltem(hDig, IDM_COSINE), »
if (SendMessage(hCtr, BM_GETCHECK, 0, 0L)) ISPN=1;
hCuril = GetDigltem(hDig, IDM_HALFCOSINE);
298
®
o ® o @ e e ® °

i
I
)
S

if (SendMessage(hCtrl, BM_GETCHECK, 0,0L)) ISPN=2;

hCtrl = GetDigltem(hDlg, IDM_NACAO8CIRC);
MLTYPE = (int)SendMessage(hCtri, BM_GETCHECK, 0, OL);

hCtrl = GetDigltem(hDig, IDM_PBDCOMP1);
if (SendMessage(hCtrl, BM_GETCHECK, 0, 0L)) pbd_component = 0;

hCtrl = GetDigltemy(hDig, IDM_PBDCOMP2),
if (SendMessage(hCtrl, BM_GETCHECK, 0, OL)) pbd_component = 1,

hCtrl = GetDigltem(hDig, IDM_IMODEL),
if (SendMessage(hCtrl, BM_GETCHECK, 0, 0L)) IMODE = 1;

hCirl = GetDligltem(hDlg, IDM_IMODE2),
if (SendMessage(hCtrl, BM_GETCHECK, 0,0L)) IMODE =2,

hCtrl = GetDigltem(hDlg, IDM_IMODE3),
if (SendMessage(hCtrl, BM_GETCHECK, 0, 0L)) IMODE =3,

hCtrl = GetDigltem(hDig, IDM_NPLOT1);
if (SendMessage(hCurl, BM_GETCHECK, 0, 0L)) NPLOT = I;

hCtrl = GetDigltem(hDig, IDM_NPLOT2);
if (SendMessage(hCtrl, BM_GETCHECK, 0, 0L)) NPLOT=2;

hCtrl = GetDigltem(hDlg, IDM_NPLOT3);
if (SendMessage(hCtrl, BM_GETCHECK, 0, 0L)) NPLOT = 3;

hCtri = GetDigltem(hDlg, IDM_NPLOT4),
if (SendMessage(hCtrl, BM_GETCHECK, 0, 0L)) NPLOT =4,

GetDigitemText(hDlg, IDM_NKEY, input, 20);
NKEY = atoi(input);

GetDigitemText(hDlg, IDM_MKEY, input, 20);
MKEY = atoi(input);

GetDigltemText(hDlg, IDM_NITER, input, 20);
NITER = atoi(input);

GetDigltemText(hDig, IDM_RADWGT, input, 20);
RADWGT = atoi(input);

GetDigltemText(hDlg, IDM_NUFIX, input, 20);
NUFIX = atoi(input),

GetDigltemText(hDig, IDM_CDRAG, input, 20);
CDRAG = atof{input);

GetDigltemText(hDIg, IDM_XULT, input, 20);
XULT = atof(input);

GetDigltemText(hDig, IDM_XFINAL, input, 20);

299

E.

XFINAL = atof(input);
GetDigltemText(hDig, IDM_DTPROP, input, 20);
DTPROP = atof{input),

}
case IDM_CANCELPBDSETTINGS :
EndDialog(hDig, 0);
break;

}
}

BOOL CALLBACK _export PBDSettingsDigProc(HWND hDlg, UINT message, WPARAM wParam,
LPARAM IParam)
{

char input[82] =", //character string for /o
switch(message)

§

case WM_INITDIALOG : {

The way in which auto-radio buttons are use in these two functions complicates
the initialization of the dialog box as well. Switches are used to cause the appropriate

buttons to be checked.

switch (ISPN)

{

case 0:{

CheckRadioButton (hDig,IDM_UNIFORM,IDM_HALFCOSINE,IDM_UNIFORM);
break; }

case 1-{ ~-
Checi.tadioButton (hDig,IDM_UNIFORM,IDM_HALFCOSINE,IDM_COSINE);
break; }

case 2:{

CheckRadioButton
(hDig,IDM_UNIFORM,IDM_HALFCOSINE,IDM_HALFCOSINE);

break; }

}

switch (IMODE)

{

case 1:{

CheckRadioButton (hDig, IDM_IMODE1, IDM_IMODE3, IDM_IMODE]) ;
break; }

case 2:{

300

‘”51
SR

4

CheckRadioButton (hDlg, IDM_IMODE!, IDM_IMODE3, IDM_IMODE2) ;
break; }
case 3:{
CheckRadioButton (hDig, IDM_IMODEL, IDM_IMODE3, IDM_IMODE3) ;
bmk;} }

switch (pbd_component)

{

case 0:

CheckRadiobution (hDlg, IDM_PBDCOMPI1, IDM_PBDCOMP2, IDM_PBDCOMP1) ,
break; }

case 1:{

CheckRadioButton (hDig, IDM_PBDCOMP1, IDM_PBDCOMP2, IDM_PBDCOMP2) ;
break; }

}

iRMLTYPE) CheckDligButton (hDig, IDM_BROCKETT08, (UINT)1);
else CheckDigButton (hDig, IDM_NACAOSCIRC, (UINT)!);

switch (NPLOT)
{
case 1:{
CheckRadioButton (hDig, IDM_NPLOT1, IDM_NPLOT4, IDM_NPLOTI) ;
break; }
case 2:{
CheckRadioButton (hDlg, IDM_NPLOT1, IDM_NPLOT4, IDM_NPLOT?2) ;
break; }
case 3:{
CheckRadioButton (hDlg, IDM_NPLOT1, IDM_NPLOT4, IDM_NPLOT3) ;
break; }
case 4:{
CheckRadioButton (hDlg, IDM_NPLOT1, IDM_NPLOT4, IDM_NPLOT4) ;
break; }
}
if(strlen(pbd_run_titie)>2) sprintf{input,"%s",pbd_run_titic);
eise sprintf{input,”%s",RUN_ID),
SetDIgitemText(hDig,IDM_PBDRUNTITLE, input);

sprintf{input,*%s",pbd_output_root);
SetDlgltemText(hDig,IDM_PBDOUTPUTROOT,input);

sprintf{input,"%d" NKEY);
SetDigltemText(hDig, IDM_NKEY,input);

sprintf{input,"%d" MKEY);
SetDlgitemText(hDig, IDM_MKEY input);

sprintf{input,*%d" NITER);
SetDigltemText(hDig, IDM_NITER input);

sprintf(input,*%d" RADWGT),

301

R TN

e afa

SetDigltemText(hDig,IDM_RADWGT,input);

sprintfiinput,“%d",NUFIX),
SetDigltemText(hDig, IDM_NUFIX, input);

sprintf{input, %3 41", CDRAG);
SetDigltemText(hDig,[DM_CDRAG,input);

sprintf{input,"%S.4f" XULT), »
SetDigltemText(hDig, IDM_XULT,input);

sprintf{input,"%35.4f" XFINAL);
SetDigltemText(hDig,IDM_XFINAL,input);

sprintf{input,"%4.31" . DTPROP), »
SetDigltemText(hDig,IDM_DTPROP,input);

return TRUE;
}

case WM_COMMAND : { »
return (BOOL)HANDLE_WM_COMMAND(hD}g, wParam, IParam,
WMPBDSettingsDlgCommand_Handler),

}

}
return FALSE; [o

C.3.10 The Project Settings dialog box functions.

The next four functions support the single and multiple component Project >’
Settings dialog boxes. No new concepts are employed in these functions. |
void WMProject1DIgCommand_Handler(HWND hDlg, int id, HWND hwndCtl, UINT codeNotify)

{ char input21] =""; {fcharacter string for i/o 'Y
switch(id)

éase IDM_OKPROJECT! : {

HWND hCur; »

GetDlgltemText(hDig, IDM_RUN_ID, input, 21);
sprintfRUN_ID, input);

GetDigltemText(hDlg, IDM_INPUTFILE, input, 20);

sprintf{INPUTFILE, input); »
GetDigltemText(hDIg, IDM_RPMI, input, 20);
RPM[0] = atoRinput);
302
»
@ o ® @ ® @ ® o q

L |
.A'NJ
Rp &Y

7
By

.

hCurl = GetDigltem(hDlg, IDM_EFFECTIVEWAKEFLAG), .
‘ effective_wake_flag = (int)SendMessage(hCurl, BM_GETCHECK, 0, OL); .

GetDigltemText(hDig, IDM_THRUSTESTIMATE, input, 20);
thrust_estimate = stof{input);

hCitrl = GetDigitem(hDlg, IDM_TUNNELOPERATIONFLAG);
‘ manel_operation_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

GetDigltemText(hDig, IDM_PROPRINGTHRUSTRATIO, input, 20);
propeller_ring_thrust_ratio = atofRinput);

}
case IDM_CANCELPROJECT! : {

R T

EndDialog(hDlg, 0);
break;

}
}

BOOL CALLBACK _export Project1DigProc(HWND hDlg, UINT message, WPARAM wParam,
LPARAM |Param)

‘ { » o
char inputf21]=""; {/character string for i/o
?vitch(mmse)
case WM_INITDIALOG : {

sprintf{input,"%s",PROJECTFILE); »
SetDigltemText(hDig,IDM_PROJECTFILE, input); i

sprintftinput,"%e" RUN_ID);
SetDigltemText(hDig,IDM_RUN_ID, input);

- sprintRinput,"%s", INPUTFILE); »
SetDigltemText(hDlg,IDM_INPUTFILE, input); ;

sprintf{input, *%6.2{" RPMIO]);
SetDigltemText(hDig,[IDM_RPM]1, input);

sprintf{input,”%5.2f" thrust _estimate); '
SetDigltemText(hDig,IDM_THRUSTESTIMATE, input);

CheckDigButton(hDig,IDM_EFFECTIVEWAKEFLAG, (UINT)effective_wake_flag);
CheckDigButton(hDig, IDM_TUNNELOPERATIONFLAG,(UINT)tunnel_operation_flag);

; sprintf{input, *%3.2f",propeller_ring_thrust_ratio); b
SetDigltemText(hDlg,IDM_PROPRINGTHRUSTRATIO, input); v

return TRUE;

303
’

}
case WM_COMMAND : {

return (BOOL)HANDLE_WM_COMMAND(bDIg, wParam, IParam,
WMProject1DIgCommand_Handler);
}

}

retum FALSE;
' } .

w{loidWMijethDlgCunmnd_Phndlet(HWNDthg. int id, HWND hwndCtl, UINT codeNotify)

char input{21] =""; //character string for i/o
switch(id)

{
case IDM_OKPROJECT? : {
HWND hCitrl;

GetDigltemText(hDig, IDM_RUN_ID, input, 21);
‘ sprintiRUN_ID, input);
GetDigltemText(hDlg, IDM_INPUTFILE, input, 20);
sprintINPUTFILE, input);
GetDigltemText(hDlg, IDM_RPMI, input, 20); > ©
' RPMJ0] = atof{input);
GetDigltemText(hDlg, IDM_RPM2, input, 20); |
RPM]1] = atofinput);
hCtrl = GetDigltem(hDlg, IDM_EFFECTIVEWAKEFLAG); -~
! effective_wake_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL); -

GetDigltemText(hDlg, IDM_THRUSTESTIMATE, input, 20);
thrust_estimate = atof{input);

hCtrl = GetDigltem(hDig, IDM_TUNNELOPERATIONFLAG); »
t tunnel_operation_flag = (int)SendMessage(hCtri, BM_GETCHECK, 0, OL);

GetDigltemText(hDig, IDM_TORQUERATIO, input, 20);
_ratio = atofinput),
hCtrl = GetDigltem(hDig, IDM_CIRCOPTWAKEALGNFLAG); »
' circ_opt_wake_alignment_flag = (int)SendMecssage(hCtrl, BM_GETCHECK, 0, OL);

hCirl = GetDigltem(hDlg, IDM_USEMANUALDAMPING);
estimate_damping_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

GetDigltemText(hDig, IDM_MANUALDAMPING, input, 20); »
. damping ~ atof{input), '

304

BOOL CALLBACK _export Project2DigProc(HWND hDig, UINT message, WPARAM wParam,

LPARAM 1Param)
char input{21]="*; /icharacter string for i/o

:wiwh(m)
case WM_INITDIALOG : {

sprintf{input,“%s",PROJECTFILE);
SetDigltemText(hDig,IDM_PROJECTFILE, input);

sprint{input,"%s" RUN_ID);
SetDigltemText(hDig,IDM_RUN_ID,input);

sprintf{input,"%s", INPUTFILE);
SetDigltemText(hDlg,IDM_INPUTFILE, input);

sprintf(input, "%6.2f* RPMI0]);
SetDigltemText(hDig,IDM_RPM1,input);

sprintRinput,"%6.2f RPM([1]);
SetDigltemText(hDig,IDM_RPM2,input);

sprintf(input,“%6.2{" thrust _estimatc);
SetDigltemText(hDig,IDM_THRUSTESTIMATE, input);

CheckDigButton(hDig,IDM_EFFECTIVEWAKEFLAG,(UINT)effective_wake_flag);
CheckDigButton(hDig,IDM_TUNNELOPERATIONFLAG,(UINT)tunnel_operation_flag);
CheckDigButton(hDig,IDM_CIRCOPTWAKEALGNFLAG,

(UINT)circ_opt_wake_alignment_flag);
CheckDigButton(hDig,IDM_USEMANUALDAMPING,(UINT)estimate_damping_flag);

sprintRinput,“%4.3f",damping);
SetDigltemText(hDig,IDM_MANUALDAMPING,input);

sprintf{input, “%3.2f" torque_ratio);
SetDigltemText(hDig,IDM_TORQUERATIO, input);

return TRUE;
}

case WM_COMMAND : {

305

)
§

W

R A

SN L S

RS

ireantds S THEEIE

o)
iy s

i e

W e ”,
e ARG

r}
;;':.
3
3

return (BOOL)HANDLE WM_COMMAND(hDIg, wParam, IParam,
WMProject2DigCommand _Handler),
}

}
return FALSE;

C.3.11 The ABS Rules Streagth Settings dialog box functions.
The WMABSDigCommand_Handler and ABSDigProc functions shown below
initialize and retrieve data from the ABS Rules Strength Settings dialog box.

void WMABSDIgCommand Handler(HWND hDlg, int id, HWND hwndCtl, UINT codeNotify)
{
char input{20] ="*; /lcharacter string for i/o
:witch(id)
case IDM_OKABSRULES: {

HWND hCud;

hCtrl = GetDigitem(hDig, IDM_FIXEDPITCH);
propeller_type_flag = (int)SendMessage(hCtrl, BM_GETCHECK, 0, OL);

hCtrl = GetDigltem(hDig, IDM_MNBRZ);
if (SendMessage(hCtrl, BM_GETCHECK, 0, OL))
propeller_material = manganese_bronze;

hCtrl = GetDigltem(hDlg, IDM_NIMNBRZ),
if (SendMessage(hCtrl, BM_GETCHECK, 0, 0L))
propeller_material = nickel_manganese_bronze;

hCtri = GetDigltem(hDig, IDM_NIALBRZ);
if (SendMessage(hCtrl, BM_GETCHECK, 0, 0L))
propeller_material = nickel_aluminum_bronze;
-a
hCitrl = GetDigltem(hDlg, IDM_MNNIALBRZ),
if (SendMessage(hCtrl, BM_GETCHECK, 0, OL))
propeller_material = manganese_nickel_aluminum_bronze;

hCitrl = GetDigltem(hDIg, IDM_CASTIRON),
if (SendMecssage(hCtrl, BM_GETCHECK, 0, OL))
propeller_material = cast_iron;

hCurl = GetDigltem(hDig, IDM_USERDEFINEDMATERIAL),

if (SendMessage(hCtrl, BM_GETCHECK, 0, OL))
propeller_material = user_defined_material;

GetDigltemText(hDig, IDM_HUBRAKE, input, 20);
rake{0] = atof{input);

306

» r
i

GetDigitemText(hDig, IDM_TIPRAKE, input, 20);
rake{1] = atofiinput);

GetDigltemTexi(hDlg, IDM_USERDEFINEDUTS, input, 20);
material_constant[user_defined material}{0] = atof{input); : @

GetDigltemText(hDig, IDM_USERDEFINEDSW, input, 20);
material_constant{user_defined_material}{1] = atof{input);

}
case IDM_CANCELABSRULES : {
EndDialog(hDig, 0);
break;
}

}

BOOL CALLBACK _export ABSDIgProcCHWND hDIlg, UINT message, »
WPARAM wParam, LPARAM [Param)
{

char input]20) = **; ' /lcharacter string for i/o
switch(message)

{

case WM_INITDIALOG : {

sprintf{input,"%4.31" rake[0]);
SetDigltemText(hDig,IDM_HUBRAKE, input);

sprintflinput,"%4.3f" rake{1]); b’
SetDigltemText(hDlg,IDM_TIPRAKE, input); .

sprintf(input,*%4. 1f* material_constant[propeller_material][0]);
SetDigltemText(hDlg, [DM_USERDEFINEDUTS, input);

sprintf{input,"%#4. 1f*, material_constant|propeller_material][1]); Y
SetDigltemText(hDig,IDM_USERDEFINEDS W, input); g

switch (propeller_material)

{

case manganese_bronze: {

CheckRadioButton(hDig,IDM_MNBRZ,IDM_USERDEFINEDMATERIAL, .
IDM_MNBRZ),

break; }

case nicke)_manganese bronze: {

CheckRadioButton(hDig,IDM_MNBRZ,IDM_USERDEFINEDMATERIAL,
IDM_NIMNBRZ),

break; }

case nickel_aluminum_broaze:{

CheckRadioButton(hDig,IDM_MNBRZ,IDM_USERDEFINEDMATERIAL,
IDM_NIALBRZ),

‘r.J.‘R, e .

307

I
¥
i
Lo
»
2
L
d

beeak;)
case mangancse_nickel _aluminum_bronze: {
CheckRadioButtoa(hDig,IDM_MNBRZ,IDM_USERDEFINEDMATERIAL,

IDM_MNNIALBRZ),

break; }

case cast_iron: {

CheckRadioButton(hDig,IDM_MNBRZ IDM_USERDEFINEDMATERIAL,
IDM_CASTIRON);

break;)}

case user_defined_material: {

CheckRadioButton(hDig,IDM_MNBRZ IDM_USERDEFINEDMATERIAL,
IDM_USERDEFINEDMATERIAL);

?ﬂ;}

:wiﬁch (propeller_type_flag)

case 1:{

CheckRadioButton (hDig, IDM_FIXEDPITCH, IDM_CONTROLLABLEPITCH,
IDM_FIXEDPITCH);,

break; }

case 0:{

CheckRadioButton (hDlg, IDM_FIXEDPITCH, IDM_CONTROLLABLEPITCH,
IDM_CONTROLLABLEPITCH) ;

l}nedt; }

return TRUE;
}

case WM_COMMAND : {

return (BOOL)HANDLE_WM_COMMAND(hDig, wParam, [Param,
WMABSDigCommand_Handler);
}

return FALSE;

C.3.12 The PBD Plot Geometry dialog box functions.

The PBD Plot Geometry dialog box is the only dialog box in PLL that is not called
by a main menu selection either directly or indirectly. It is called by double clicking the
right mouse button on a PBD plot in the Plot Viewer window.
void WMPBDPRYDIgCommand_Handles(HWND hDIg, int id, HWND hwndCtl, UINT codeNotify)

{
char input{20] = **, //character string for i/o

308

:wiﬂ(ﬂ)

case IDM_OKPBDPRY: {

The pitch, roll, and yaw angles are stored in memory in the units of radians, but are
displayed on the screen and input by the user in the units of degrees. The conversion is
done in the assignment statements in the Command_Handler function and in the sprintf

functions in the DigProc function. ’

&
b

GetDigltemText(hDig, IDM_PBDPITCH, input, 20); ’

pitch = PI*atofinput)/180.0; ’

GetDigltemText(hDig, IDM_PBDROLL, input, 20);

roll = PI*atof{input)/180.0; 7

GetDigltemText(hDig, IDM_PBDYAW, input, 20);)

yaw = Pi*atof{input)/180.0; .

GetDigltemText(hDig, IDM_PBDSCALE, input, 20);

scale_factor = atof{input);

' » o
case IDM_CANCELPBDPRY : {
EndDialog(hDig, 0); !
= , >
}

}
' BOOL CALLBACK _export PBDPRYDigProc(HWND hDlg, UINT message, WPARAM wParam, ’

LPARAM [Param) .

{ e
char input{20] = "%, /fcharacter string for i/o
:witch(w) £
case WM_INITDIALOG : { o

. i
sprintfinput,“%4. 11*,pitch* 180.0/PT), 'S;e
SetDigltemText(hDig, IDM_PBDPITCH, input), §§
sprintfinput,“%4. 1£*,rol1*180.0/PT); H
SeDigltemText(hDig,IDM_PBDROLL input); i
sprintf{input, "%4. 1{*,yaw* 180.0/P1); §

309

3
B
%

B

sprintf{input,"%4. 11" scale_factor); [

[4
SetDigltemText(hDig IDM_PBDYAW,input), .
®
SetDightemText(hDig, IDM_PBDSCALE, input);

}
case WM_COMMAND : {

return (BOOL)HANDLE_WM_COMMAND(hDig, wParam, [Param,
WMPBDPRYDIgCommand_Handler);
}

} »
return FALSE;

C.3.13 The Optimization Data dialog box functions. »
The Optimization Data dialog box is handled by the two functions shown below.
void WMOPTIMIZATIONDIgCommand_Handler(HWND hDlg, int id, HWND hwndCtl, UINT
codeNotify)
¢ char input{20]) =""; //character string for i/o
switch(id)
t{:ase IDM_OKOPTDATA: {
HWND hCud;

If there is only one component in the project, the opt_comp flag is set to one

regardless of the user input. Otherwise, the flag is set in the usual manner. »

i LDEV=1)opt_comp =1;
else{
hCtrl = GetDigltem(hDig, IDM_OPTCOMPI1);

if (SendMessage(hCtrl, BM_GETCHECK, 0, OL))
opt_comp = 1;

hCtrl = GetDigltem(hDig, IDM_OPTCOMP2),
if (SendMessage(hCirl, BM_GETCHECK, 0, OL)) »
opt_comp = 2;

310

GetDigltemText(hDlg, IDM_OPTREQTHRUST, input, 20); .
thrust_req = atof(input); »

GetDigltemText(hDig, IDM_OPTTORQCOEFF, input, 20);
torq_coeff = atof{input);

EndDialog(hDig, 0);

break; }
}
}

BOOL CALLBACK _export OPTIMIZATIONDIigProc(HWND hDig, UINT message, WPARAM

wParam, » ¢
LPARAM 1Param)

{

char input{20] = "*; //character string for i/o
:witch(w)

case WM_INITDIALOG : {

:witch (opt_comp)

case 1:{

CheckRadioButton (hDig, IDM_OPTCOMPI, IDM_OPTCOMP2, IDM_OPTCOMPI),

break; }

case 2:{ . ' P
CheckRadioButton (hDig, IDM_OPTCOMPI1, IDM_OPTCOMP2, IDM_OPTCOMP2) ;

break; }

}

sprintf(input,*%9.2{" thrust_req);
SetDigltemText(hDlg,IDM_OPTREQTHRUST, input);

sprintf(input,"%45.4f" torq_coefT);
SetDigltemText(hDig,IDM_OPTTORQCOEFF,input);

return TRUE;
}
case WM_COMMAND : {

return (BOOL)HANDLE_WM_COMMAND(hDIg, wParam, |Param,

WMOPTIMIZATIONDIgCommand_Handler); . o
}

return FALSE;

C.3.14 The About dialog box functions.

31

The About dialog box is handled by the last two functions in this section.

void WMABOUTDIigCommand_Handler(HWND hDig, int id, HWND hwndCtl, UINT codeNotify)

{

}

:WWW)

case IDM_OKABOUT : {
EndDialog(hDig, 0);

break; }
}

BOOL CALLBACK _export ABOUTDIgProc(HWND hDIg, UINT message, WPARAM wParam,

{

PARAM [Param)

switch(message)
t{:ae WM_INITDIALOG : {
return TRUE; }
case WM_COMMAND : ¢
return (BOOL)HANDLE_WM_COMMAND(hDlg, wParam, [Param,

WMABOUTD{gCommand_Handler);
}

return FALSE;

312

R S~

APPENDIX C4

The PLL output functions.

i

e e L PPN SR

o nw.f,’&t“ m&:ﬁhmatﬂ'ﬂmm W AT

C.4 The PLL output functions.

The PLL Windows™ application uses twelve different functions to draw graphical
output to the monitor and/or system printer. Four of the functions are used exclusively for
PLL output. Six are used exclusively for PBD output and two provide PLL and PBD
output. In addition to the functions that provide monitor and printer output, two
functions provide output in the form of text files. The output function declarations are
listed below in the order in which they will be presented.

//PLL output

void paintbld(HWND hWnd);
void paintwake(HWND hWnd);
void paintplot(HWND hWnd),
void printplot(HDC hDC),

//PLL and PBD output
void paintout(HWND hWnd);
void printout(HDC hDC),

//PBD output

void paint_graphs(HDC PaintDC, POINT origin, FILE *plot, int color);
void paint_hub(HDC PaintDC, POINT origin, FILE *plot);

void paint_gsp(HDC PaintDC, POINT origin, FILE *plot);

void paint_vcp(HDC PaintDC, POINT origin, FILE *plot);

void paint_cmv(HDC PaintDC, POINT origin, FILE *plot);

void paint_rdc(HDC PairtDC, FILE *plot);

[itext file output

void write_output_file(HFILE out),
void write_pbd_files(void),

The output functions used in PLL are similar to those used in VLL and VLMLE.

The explanations provided here will assume that the output file descriptions included in
Appendices A and B are understood.

314

C.4.1 The paintbld function.

The paintbld function is used to draw blade data on the Blade Viewer window. It
is not used to draw output to the system printer. It draws cartesian plots of non-
dimensional chord, thickness, drag, and circulation of the blades for component(s) 1 (and
2) and for the ring in the case of ringed propellers. The handle of the Blade Viewer
window is passed as the argument of the function.

void paintbld(HWND hWnd)
{

‘declanvanablesthatmdeﬂnedmthepllcﬁlcandthat .
* will be used in this function

LA L L L4 L *hes 8/

The paintbld function plots data contained in the global variables declared below.
The plot data is not read from a data file.

extern char BLDIN[max_comp}f21},
ringed_propellerimax_comp};

extern int LDEYV, project_flag, MRPIN[max_comp],
MBIN{max_comp];

extern float XRPIN[max_rad]{max_comp],
XCHD[max_rad][max_ccmp],
XTHK|[max_rad][max_comp],
XCD[max_rad]{max_comp],
XGjmax_rad][max_comp],
BAR{max_comp],
BANGIN[max_ang]{max_comp},
BCHDIN[max_ang][max_comp],
BTHKIN[max_ang][max_comp],
BCDIN[max_ang][max_comp},
BCIRIN[max_ang]{max_comp};

* Variable declarations .

e hbhdihts /

PAINTSTRUCT ps; //paint structure
HDC BiadePaintDC, //handle of the device context

HFONT hFont, /ffonts for drawing alphanumerics

315

hVertFont,
hSmaliFont,
hOidFont;
HPEN hPlotPen(4]{2], //pens for drawing plots q
hStandardPen,
hOidPen;
LOGFONT IFont; /Nogical font structure for »
// creating the fonts
HBRUSH hBrush, {forushes for drawing on the
hOldBrush; /I screen
POINT origin{2]}=({{35,5}, /forigins of the plots of ’
{345 5}}, // components 1 and 2
origin_graph, /hemp storage of the origin
1/ of the graph being plotted
point[max_rad); //point structures used to plot
. // the parameters in the »
// form of polylines
int delta_y = 100, INvertical graph spacing
length, /Nength of character strings
M,j, i, /Moop counters
¢ number_of_graphs; //the number of ’ ‘
components 1o
// be graphed
float max_chord, min_chord, //max and min values for the
P max_thick, min_thick, /I four parameters ’
max_drag, min_drag, Y
max_circ, min_circ;)
float width, height, //display size scaled to 640/480
delta_chord, //differential between the max
e deita_thick, {/ and min values for the »
delta ¢ // parameters
delta_circ;
char buffer{120}; //character string used for
{/ text output
q »
The painting process is started using the BeginPaint function. If a project is
currently open, the appropriate data is plotted. Otherwise, the bulk of the code is skipped
¢ and the painting process is terminated. ’
//create the device context

316

BladeP2intDC = BeginPaint(hWnd, &ps);
/1 if a project is currently open, draw the blade data
iflproject_flag){

Tﬁesizeofthedisplayaruiscalwhtedsoﬂnttheoutputmaybemade
independent of the specifications of the monitor.
//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats

width = (float)GetDeviceCaps (BladePaintDC, HORZRES),
height = (float)GetDeviceCaps (BladePaintDC, VERTRES);

//since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that aspect ratio

if((width/height)>(4.0/3.0))

width = height*(4.0/3.0);
else

height = width®(3.0/4.0);

Three fonts, eight pens, and a brush are created for the purpose of drawing the
output.
//create fonts for drawing alphanumeric output

hFont = GetStockFont(DEVICE_DEFAULT_FONT);

GetObject(hFont,sizeofLOGFONT), & IFont);

[Font. IfHeight = -8;
hSmallFont = CreateFontIndirect(&Font);
GetObject(hFont,sizeofLOGFONT),&IFont);

IFont. fEscapement = 900;
[Font Ifeight =-10;

hVertFont = CreateFontIndirect(&[Font);
//create pens for drawing plots
hPlotPen[0][0] = CreatePen(PS_SOLID, 1, RGB(255,0,0));

hPlotPen[1][0] = CreatePen(PS_SOLID, 1, RGB(0,255,0));
hPlotPen([2][0] = CreatePen(PS_SOLID, 1, RGB(0,0,255));

k1 ¥

e e

72 RIS X S A

PRI

o T, TN
SRR

s A

.
¢
e
@

hPiotPen3][0] = CreatePen(PS_SOLID, 1, RGB(255,0,255));

hPlotPenj0)[1] = CreatePen(PS_DOT, 1, RGB(255,0,0)); »
' hPlotPen[1]{1} = CreatePea(PS_DOT, 1, RGB(0,255,0));

hPlotPen|2][1] = CreatePen(PS_DOT, 1, RGB(0,0,255));

hPlotPen[3}{1] = CreatePen(PS_DOT, 1, RGB(255,0,255));

hStandardPen = CreatePen(PS_SOLID, 1, RGB(0,0,0));

®

' lcreate and select a hollow brush so that ellipses and rectangles will »
//not overwrite pre-existing graphical output, also save a handle to the
Horiginal brush
hBrush = GetStockObject(HOLLOW_BRUSH);
hOldBrush = SelectObject(BladePaintDC,hBrush);
The y axes are labeled using the vertical font. The file names used in the project
are printed at the top of the appropriate graph.
' //select the vertical font and labe! the y-axes of the plots »
hOldFont = SelectFont(BladePaintDC,hVertFont);
{/select the standard pen
‘ pOidPen = SelectPen(BladePaintDC, hStandardPen); > ©
/lalign the text such that it is centered
SetTextAlign(BladePaintDC,TA_CENTER);,
‘ length = sprintf(buffer, "chord/D"); »’
TextOut(BladePaintDC, (int)((origin[0].x-30)*width/640.0),
(int)((origin[0).y+1*delta_y-40)*height/480.0),
buffer, length);
-d. -~
' length = sprintf{buffer, “thickness/D"); ’
TextOut(BladePaintDC,(int)((origin[0].x-30)*width/640.0),
(int)((origir!0].y+2*delta_y-40)*height/480.0),
buffer, length);
' length = sprintf(buffer, *CD"); o
TextOut(BladePaintDC, (int)((origin{0).x-30)*width/640.0),
(int)((origin[0].y+3*delta_y-40)*height/480.0),
buffer, length);
' length = sprintf(buffer, *Non-dim circ™); »

TextOut(BladePaintDC, (int)((origin[0].x-30)*width/640.0),

318

(int)((origin[0].y-+4*deita_y-40)*height/480.0),
bufer, leagth);

liselect the normal size font and draw the file names for both components
1/ at the top of the graphs
SelectFont(BladePaintDC, hFont);
for(M=0;M<LDEV.M++) {
length = sprintf(buffes, "BLADE #%d: %s", M+1, BLDIN[M¢21});

TextOut(BladePaintDC, (int)(origin[M).x+155)*width/640.0),
(int)((origin[M].y)*height/480.0),

buffer, length);
length = sprintfibuffer, “Non-Dimensional Radii®);

TextOut(BladePaintDC, (int)((origin[M].x+155)*width/640.0),
(int)((origin[M].y+410)*height/480.0),
buffer, length);

}
/Hor the ringed propeller case, label the graphs appropriately
if{(ringed_propellerj0]==(charX(89))ji(ringed_propeller]1}==(char)(39)))
{
length = sprintf{buffer, "RING DATA");

TextOut(BladePaintDC, (int)((origin[1].x+155)*width/640.0),
(int)((origin[1].y)*height/480.0),
buffer, length);

length = sprintf{buffer, “Non-Dimensional Angles”);
TextOut(BladePaintDC, (int)((origin[1].x+155)*width/640.0),

(int)((origin(1].y+410)*height/480.0),
buffer, length);

SetTextAlign(BladePaintDC,TA_LEFT);
{/select the small font for labeling the x-axes
SelectFont(BladePaintDC,hSmallFont);

319

Be gt m»?H

L L

ML S AR

- *‘_‘:.a"*

£ IR

N A
P

Eaogy

T L

The appropriate number of graphs is drawn based on the number of components
o and if a single component project is a ringed propeller. The vertical lines for the graph are
then drawn as a series of rectangles. The horizontal lines are drawn by using MoveTo and
LineTo calls nested in two for loops. The x axes are then labeled.

//determine the number of graphs by considering LDEV and whether a
/I single component is ringed

number_of graphs = LDEV,

. if{(ringed_propeller{0]==(charX89)} [
(ringed_propeller{ 1]==(char)(89)))

number_of_graphs++;
//draw the vertical lines of the graphs by drawing a series of rectangles
¢ for(M=0;M<number_of_graphs;M++){
for(i=1<6++) _
Rectangle(BladePaintDC, (int)((origin[M].x+155-*27T)*width/640.0),
(int)((origin[M]).y+20)*height/480.0), » ®
¢ (int)((origin[M].x+155+j*27)*width/640.0),
(int){(origin[M).y+395)*height/480.0));
}
//draw the horizontal lines for the graphs >’
for(i=0;i<4;i++){ "
for(j=1,<4j++){

MoveTo(BladePaintDC (int)((origin[M].x+20)*width/640.0), ®
e (int)((origin[M).y+20+(i*delta_y)+(*20))*height/480.0));

LineTo(BladePaintDC,(int)((origin[M).x+290)*width/640.0),
(int)((origin{M].y-+20+-(i*delta_y)+(j*20))*height/480.0));

e } »

{/complete the graphs by drawing a vertical line at the center of the graphs

MoveTo(BladePaintDC,(int)((origin[M].x+155)*width/640.0), ®
e (int)((origin[M].y+20)*height/480,0));

LineTo(BladePaintDC, (int){(origin[M].x+155)*width/640.0),

320

(int)((origin[M]).y+395)*height/430.0)),
’ INabel the x-axes
Sor (=0 <11 3++X
leagth = sprintfi{buffer, *%2.1f",/10.0);
’ TextOut(BladePaintDC, (int)((origin{M].x+10+j*27)* width/640.0),
%w.myuwm.o),
}
® }
A for loop is used to perform the calculations and GDI calls to scale and draw the
output for the graphs for each component.
o /Moop through both components
for(M=0;M<LDEV,;M++){
¢ The maximum and minimum values for each of the parameters is calculated. If the
values are the same, they are artificially separated. The difference between the maximum
and minimum values is then calculated.
¢ /fnitialize the maximum and minimum values for each parameter to be plotted

max_chord=0.0; min_chord=1.0;

max_thick=0.0;, min_thick=1.0;
¢ max_drag=0.0; min_drag= 1.0;

max_circ=0.0; min_circ= 1.0;

/ffor each radius, compare the parameter value to the previous maximum and
// value, and store the max/min

for(=0,j<MRPINIMJ j++){

max_chord = max(max dlo:d,XCHDﬁ][M])
min chonl = min(min_chord, XCHD{j][M]);

o max_thick = max(max_thick XTHKIM);
min_thick = min(min_thick XTHK{)M]);

321

max_drag = max(max_drag XCD{j)[M]);
min_drag = min(min_drag. XCD{jl[M]);

’ max_circ = max(max_circ, XGGI[MI);
min_circ = min(min_circ XG{j}[M]);

}
/Af the maximum and minimum values are close together, spread them apart »

iimax_chord - min_chord<del)
{max_chord = max_chord+0.1;
min_chord = min_chord-0.1;}
if{imax_thick - min_thick<del)
¢ {max_thick = max_thick+0.1; L
min_thick = min_thick-0.1;)
imax_drag - min_drag<del)
{max_drag = max_drag+0.01;
¢ min_drag = min_drag-0.01;} »
if{imax_circ - min_circ<del)
{max_circ = max_circ+0.01;
min_circ = min_circ-0.01;}
o /Hind the differential between the min and max values for each parameter » Py
delta_chord = max_chord - min_chord;
delta_thick > max_thick - min_thick;
delta_drag = max_drag - min_drag; » ~

delta_circ = max_circ - min_circ;

The plots are then drawn using polylines of the appropriate color and the y axis
o value labels are written. The individual points are drawn as circles. This is done for the »
chord, thickness, drag coefficient, and circulation.

{/plot the four parameters »
{/start with the non-dimensionalized chord
//sclect the appropriate colored pen
SelectPen(BladePaintDC, hPlotPen[0}{0]). »
{/adjust the origin of the plot

322

origin_graph x = origin{M].x+20;
origin_graph.y = origin[M].y+40;

/Noop through all the radii, store the location of each point in an
/farray of point structures, and draw an cifipec at each point
for(j7~0 j<MRPIN[MJ;j++ X
pointfj].x = (int)((origin_graph.x+270*XRPIN[j][M])*
width/640.0);
pointfj].y = (int)((origin_graph y+((max_chord-XCHD(j}[M]¥
delta_chord)*40)*height/480.0);

Ellipse(BladePaintDC,point{j].x-3,point{j].y-3,
point(j].x+3,point(j].y+3),

}
//draw a polyline connecting all of the points
Polyline(BladePaintDC,point, MRPINIM]);
/Nabel the y-axis
for(=0;j<3,j++){
length = sprintfbuffer, "%4.3f", min_chord+(j*delta_chord/2.0));
TextOut(BladePaintDC . (int)((origin_graph.x-31)*width/640.0),
(int)((origin_graph.y+37-j420)*height/480.0),
, buffer, length);
{fplot the non-dimensionalized thickness
SelectPen(BladePaintDC, hPlotPen(1]{0]);
origin_graph.y = origin_graph.y-+delta_y;
for(7=0j<MRPIN[M];j++){
point[j).x = (int)((origin_graph.x+270*XRPIN[j](M])*
width/640.0);
point{jl.y = (int)((origin_graph.y+((max_thick-XTHK[j)[M]¥
delta_thick)*40)*height/480.0);

Ellipse(BladePaintDC,point{j]. x-3,point[j].y-3,

_ point(j}.x+3,point{j].y+3);
}
Polyline(BladePaintDC,point, MRPIN[M]);
for(0,5<3,j+){
323

leagth = sprimf{bufiier, “%4.3f", min_thick+(j*delta_thick/2.0));
TextOut(BladePaintDC, (int)((origin_graph. x-31)*width/640.0),
(int)((origin_graph.y+37-j*20)*height/480.0),
buflier, length);
}
I/plot the viscous drag coefficient
SelectPen(BladePaintDC, hPlotPen[2][0]);

origin_graph.y = origin_graph.y-+delta_y;

for(7=0,j<MRPIN[M];j++){
point(j].x = (int)((origin_graph.x+270*XRPIN[j][M])*
width/640.0);
point(jl.y = (int)((origin_graph.y+((max_drag-XCD{j][M]V
delta_drag)*40)*height/480.0);

Ellipse(BladePaintDC,point(j).x-3,point[j).y-3,
point{j}.x+3,point[j].y+3);

}
Polyline(BladePaintDC,point, MRPIN[M]);
for(7=0,j<3j++){
length = sprintfibuffer, *%4.3f* min_drag+(j*delta_drag/2.0));
TextOut(BladePaintDC, (int){(origin_graph.x-31)*width/640.0),
(int)((origin_graph.y+37-j¥20)*height/480.0),
} buffer, length),
Ifplot the non-dimensional circulat -
SelectPen(BladePaintDC, hPlotPen(3][0]);
origin_graph.y = origin_graph.y+delta_y;
for(=0;j<MRPIN[M];j++){
pointfj].x = (int)(origin_graph.x+270*XRPIN[j][M])*
width/640.0);
point[j).y = (int)((origin_graph.y+((max_circ-XG[j)[M]¥
delta_circ)*40)*height/480.0);

Ellipse(BladePaintDC,point{j}.x-3,point[j}.y-3,
point{j].x+3,poini(j].y+3);

324

}
Polylinc(BladePaintDC, point, MRPIN[M]),
Sor(Oy <3+
length = sprintfbuffer, “%4.3f",min_circ+(j*delta_circ/2.0));
TextOut(BladePaintDC, (int)((origin_graph.x-31)*widthv640.0),

(int)((origin_graph.y+37-j*20)*height/480.0),
buffer, leagth),

The process is repeated for the ring data in the case of a single component ringed
propeller. In this case the values are plotted against a non-dimensionalized angle.

{/Aif component #1 is a ringed propelier, plot the ring parameters in
/Hhe location where component #2 is normally plotted

if(ringed_propelier{0}==(char)(89))ii(ringed_propeller{1j==(char)X(89)))

{
/finitialize the maximum and minimum values for each parameter to be plotted

max_chord=0.0; min_chord=1.0;
max_thick=0.0; min_thick=1.0;
max_drag= 0.0; min_drag= 1.0;
max_circ=0.0; min_circ= 1.0;

/ffor each angle, compare the parameter value to the previous maximum and
// value, and store the max/min

for(5=0,j<MBIN[0];j++){

max_chord = max(max_chord, BCHDIN[j}{0]));
min_chord = min(min_chord, BCHDIN{j}{0]);

max_thick = max(max_thick, BTHKIN(j}{0]);
min_thick = min(min_thick BTHKIN(j}{0]);

max_drag = max(max_drag.BCDIN}[O]);
min_drag = mi(min_drag BCOING}IO]);

max_circ = max(max_circ,BCIRINGj){0]);,
min_circ = min(min_circ,BCIRINEj][0]);

325

.......

o B 7 R e

A LTI S

L TR R

gk T

2
i

.

e

=
NP

i S e XIS,
1 I Y

I RIS GRS S T e

® o@e @

}
/Af the maximum and minimum values are close together, spread them apart
iRmax_chord - min_chord<del)
{max_chord = max_chord+0.1;
min_chord = min_chord-0.1;}
iffmax_thick - min_thick<del)
{max_thick = max_thick+0.1;
min_thick = min_thick-0.1;}
ifimax_drag - min_drag<del)
{max_drag = max_drag+0.01;
min_drag = min_drag-0.01;}
if{max_circ - min_circ<del)
{max_circ = max_circ+0.01;
min_circ = min_circ-0.01;}
//ffind the differential between the min and max values for cach parameter
delta_chord = max_chord - min_chord;
delta_thick = max_thick - min_thick;
delta_drag = max_drag - min_drag;
delta_circ = max_circ - min_circ;
//plot the four parameters
//start with the non-dimensionalized chord
//select the appropriate colored pen
SelectPen(BladePaintDC, hPlotPen{0]{0]);
//adjust the origin of the plot

origin_graph.x = origin{M].x+20;
origin_graph.y = origin[M].y+40;
for(5=0;j<MBIN[0] j++){
point{j}.x = (int)(origin_graph.x+270*BANGIN[j}{0])*
width/640.0);

pointjl.y = (int)((origin_graph y+((max_chord-BCHDIN(j]{0]V
delta_chord)*40)*height/480.0);

Ellipse(BladePaintDC,point{j].x-3,pointj].y-3,
point[j].x+3,point(j}.y+3);

}

326

Polyline(BladePaintDC,point, MBIN[0});
for(7=0j<3;j+)
length = sprintfibuffer, *%4.3f°, min_chord+(j*deita_chord/2.0));
TextOut(BladePaintDC, (int)((origin_graph. x-3 1)*width/640.0),
(int)((origin_graph.y+37-j*20)*height/480.0),
buffer, length);
}
//plot the noa-dimensionalized thickness
SelectPen(BladePaintDC hPiotPen]|1]{0]);
origin_graph y = origin_graph.y-+delta_y,
for(j=0;j<MBIN[O0};j++){
point{j}.x = (int)((origin_graph.x+270*BANGIN{j}{0})*
width/640.0);
point(jl.y = (int)((origin_graph.y+((max_thick-BTHKIN(j}{0]¥
delta_thick)*40)*height/480.0);

Elipse(BladePaintDC, point{j}.x-3,point[j].y-3,
point[j].x+3,point{jl.y+3);

}
Polyline(BladePaintDC,point, MBIN[0]);
for(=0,j <3+
length = sprintf(buffer, *%4.3f*, min_thick+(j*delta_thick/2.0));
TextOut(BladePaintDC, (int)(origin_graph. x-31)*width/640.0),
(int)((origin_graph.y+37-j*20)*height/480.0),
buffer, length);
} .
//plot the viscous drag coefficient
SelectPen(BladePaintDC, hPlotPen|2](0]);
origin_graph.y = origin_graph y+dcita_y;
for(=0,j<MBIN[0] j++){

pointfj].x = (int)((origin_graph.x+270*BANGINJj}[0])*
width/640.0),

327

-

pointfj).y = (int)((origin_graph.y+((max_drag-

BCDIN[;}{0]Vdelta_drag)*40)*beight/480.0),

Ellipse(BladePaintDC, pointj].x-3,point{j}.y-3,
point[j].x+3,point{j].y+3);

}
Polyline(BladePaintDC,point, MBIN{0]);
for(=0,j<3 i+
length = sprintfibuffer, "%4.3f",min_drag+(j*delta_drag/2.0));
TextOut(BladePaintDC, (int){(origin_graph x-31)*width/640.0),
(int)((origin_graph.y+37-j*20)*hecight/480.0).
buffer, length);

}

/!plot the non-dimensional circulation

SelectPen(BladePaintDC, hPlotPen(3][0]);
origin_graph.y = origin_graph.y-+delta_y;
for(=4,j<MBIN[0] j++){
point(j}.x = (int)((origin_graph.x+270*BANGIN(j}[0])*
width/640.0);
point(jl.y = (int)((origin_graph.y+((max_circ-BCIRIN(j](0])/
delta_circ)*40)*height/480.0);

Ellipse(BladePaintDC,point{j}.x-3,point[j].y-3,
point{j].x+3,point{j].y+3);

}
Polyline(BladePaintDC,point, MBIN[0]);
for(=0j<3;j+){
length = sprintfibuffer, *%4.3",min_circ+({j*delta_circ/2.0));
TextOut(BladePaintDC, (int)((origin_graph.x-31)*width/640.0),

(int)((origin_graph.y+37-j#20)*height/480.0),
buffer, length);

328

e —_——

After the plots are co;nplete, the original pen, font, and brush are selected back
into the device context and the pens, fonts, and brush created for this function are deleted.
The paint process is then terminated using the EndPaint function.

//select the original brush, pen and font back into the device
// context and delete the fonts, pens, and brush created for this function

SelectPen(BladePaintDC hOldPenj;
SelectFont(BladePaintDC,hOldFont);
SelectObject(BladePaintDC,hOldBrush);
DeleteFont(hFont),
DeleteFontthSmallFont);
DeleteFont(hVertFont);
DeleteObject(hBrush);
DeleteObject(hStandardPen);
for(i=0;i<2;i++)

for(j=0;j<4;j++)

DeleteObject(hPlotPen(jl[i]);
//close out the paint command

EndPaint(thWnd, &ps);

C.4.2 The paintwake function.

The paintwake function is used to draw polar plots of the axial, radial, and
tangential wake profiles for the project component(s) to the Wake Viewer window on the
monitor. It is not used to produce printed output. The function also writes the
CURRPBD. VEL file that is used as input to the PBD FORTRAN executable. The

paintwake function receives the handle to the Wake Viewer window as an argument.

void paintwake(HWND hWnd)
{
‘declamvanablathataredeﬁnedmthepllcﬁleandtlmt *
‘mllbeusedmthnsﬁm«m
sksesReRe nERskERne ‘v#‘t/
329
[L J o ® ® e @

extern char

LDEYV, project_flag, component_flag,
NRWIN[max_comp}, NHARMA[max_comp],

NHARMR|[max_comp}, NHARMT|[max_comp};

XRWIN[max_wake_rad][max_comp},
XVA[max_wake_rad][max_wake_har][2]}{max_comp],
XVR[max_wake_rad]{max_wake_har]{2][max_comp],
XVT{max_wake_rad}{max_wake_har][2]{max_comp],
XFINAL;

WKIN[max_comp][21];

[
* Variable declarations

positions for

ssss/

HDC WakePaintDC; //andle of the device context
PAINTSTRUCT ps; /Ipaint structure
HPEN hColorPen{max_rad], //pens for drawing plots
hThickPen, //pen for boxing plots
hOldPen; //Mandle of original pen
HFONT hFont, //font for text output
hOldFont; /loriginal font
HBRUSH hBrush, I/brushes for drawing on the
hOldBrush; //screen
FILE *out; /Ipointer to a file structure
POINT origin_graph|3]= //points defined to locate the
{110,130}, /lorigins of the polar plots
{530,130}, //and the key on the screen
{320,330} },
origin_key={20,235},
points[31]; ~ffpoint structures used to plot
//the velocity profiles in the
//form of polylines
int length, /Nength of character strings
i,j,k,mn, //counters for loops
ellipse_size=90, //size of the polar plots
T, //number of axial
// specifying velocities in
1/ pbd .vel file

float max[3]}={-2.0,

//maximum and minimum values

-2.0, /lof the axial, radial, and
-2.0}, /tangential velocities, used
330
o o e o

min{3}={ 2.0, /o scale the polar plots

2.0,
2.0},
width, height, //display size scaled to 640/480
delta, /fused to scale the polar plots
thetal30), //discrete angles for
//calculating and plotting
Iivelocities
wvelocity(3] //A-D array for storing the
[max_comp] //calculated wake velocities
[max_wake_rad]
(30},
ax_pos; //axial position for writing pbd
1/ velocity file
char buffer{120]; //a buffer used for writing
/Mtext output

As in the paintbld function, the window is prepared for painting with the
BeginPaint function. If a project is not open the bulk of the code is skipped and the

painting process is terminated.

{/create the device context
WakePaintDC = BeginPaint(hWnd, &ps);
/lonly plot the profiles if a project is currently open
iflproject_flag){

Twenty different colored pens are created since as many as twenty different radii
may be used for specifying the wake profile. A thick black pen is created for drawing
frame rectangles around the plots.

//create solid pens

hThickPen = CreatePen(PS_SOLID,2, RGB(0,0,0));

hColorPen[0])=CreatePen(PS_SOLID, 1, RGB(255,0,0)); //red

hColorPen| 1 }=CreatePen(PS_SOLID, 1, RGB(255,255,0));//ycliow

hColorPen[2}~CreatePen(PS_SOLID, 1, RGB(0,255,0)); //green

bColorPen(3]=CreatePen(PS_SOLID, 1, RGB(0,255,255));/Mlight biue
bColorPenf4]~CreatePen(PS_SOLID, 1, RGB(0,0,255)); //bright blue

331

g
e
;
b

AR e

seomiy

4
‘;
¥
48
':

SONPL

hColorPen|5}=CreatePen(PS_SOLID, 1, RGB(255,0,255)),//magenta
hColorPen[6]=CreatcPen(PS_SOLID, 1, RGB(0,64,128)); //dark blue

//create dotted pens

hColorPen(7]=CreatePen(PS_DOT, 1, RGB(255,0,0)); //red
hColorPen(8]=CreatePen(PS_DOT, 1, RGB(255,255,0)); //yellow
hColorPen[9}=CreatePen(PS_DOT, 1, RGB(0,255,0)); //green
hkColorPen{10}=CreatePen(PS_DOT, 1, RGB(0,255,255)); /Nlight blue
hColorPen{11]=CreatePen(PS_DOT. 1, RGB(0,0,255)); //oright blue
kColorPen[12}=CreatePen(PS_DOT, 1, RGB(255,0,255)); /magenta
hColorPen[13]=CreatePen(PS_DOT, 1, RGB(0,64,128)); //dark blue

/lcreate dashed pens
hColorPen[14]=CreatePen(PS_DASH, 1, RGB(255,0,0)); //red
hColorPen[15]=CreatePen(PS_DASH, 1, RGB(255,255,0));//ycllow
hColorPen[16]=CreatePen(PS_DASH, 1, RGB(0,255,0)); //green
hColotPen|17}=CreatePen(PS_DASH, 1, RGB(0,255,255));//light blue

hColorPen[18]=CreatePen(PS_DASH, 1, RGB(0,0,255)); //bright blue
hColorPen[19]=CreatePen(PS_DASH, 1, RGB(255,0,255));//magenta

The size of the display area is calculated.
//determine the width of the display in pixels and the height of the display

// in raster lines and cast them as floats

width = (float)GetDeviceCaps (WakePaintDC, HORZRES),
height = (float)GetDeviceCaps (WakePaintDC, VERTRES),

[/since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that aspect ratio

if{(width/height)>(4.0/3.0))
width = height*(4.0/3.0);
else
height = width*(3.0/4.0);
The device default font and a hollow brush are selected into the device context.
//create font for drawing alphanumeric output
hFont = GetStockFont(DEVICE_DEFAULT_FONT);

{/select a thick pen for drawing the polar plot outer ring and save a handle
/1 to the old pen

hOldPen = SelectPen(WakePaintDC,hThickPen),

//create and select a hollow brush so that cllipses and rectangles will
// not overwrite pre-existing graphical output, also save a handle to the

332

alhe 2

¥

1/ original brush

hBrush = GetStockObject(HOLLOW_BRUSH);
hOidBrush = SelectObject(WakePaintDC,hBrush),

//select the normal sized font and save a handle to the old font

Q

hOldFont = SelectFont(WakePaintDC, hFoat),

Thirty evenly spaced angles are used for calculating and plotting the velocity

profiles.

//calculate the discrete angles for which the velocities will be calculated .
for(i=0;i<30;i++) thetafi]=i*pi/15.0;

The screen and the individual plots are labeled. The bounding rectangles are then
drawn. A circle indicating the maximum velocity on the plot is also drawn.
//align the text such that it is centered and draw the main heading

SetTextAlign(WakePaintDC,TA_CENTER),

length = sprintf{buffer, "Wake Profile for");

TextOut(WakePaintDC, (int)(320*width/640.0),
(int)(30*height/480.0), buffer, length);

length = sprintf{buffer, "Component #%d",component_flag+1); . 7

TextOut{WakePaintDC,(int)(320*width/640.0),
(int)(45*height/480.0), buffer, length);

//1abel the three polar plots
length = sprintf{ibuffer, "Axial");

TextOut(WakePaintDC, (inf)((origin_graphlaxial]. x)*width/640.0),
(int)((origin_graph[axial].y-120)*height/480.0), buffer, length);

length = sprintf{buffer, "Radial"), .

TextOut(WakePaintDC,(int)((origin_graphjradial].x)*width/640.0),
(int)(origin_graph{radial].y-120)*height/480.0), buffer, length);

length = sprintf{buffer, "Tangential");

TextOut(WakePaintDC.(int)((origin_graph[tangential]. x)*width/640.0),
(int)((origin_graph|[tangential].y-120)*height/480.0), buffer, length);

333

SetTextAlign(WakePaintDC,TA_LEFT);

//draw the rectangles that enclose the polar plots and the circles that
/findicate the maximum velocities

for(j=axialj<=tangential j++) {

Rectangle(WakePaintDC, (int)((origin_graph[j].x-100)*width/640.0),
e (int)((origin_graphlj].y-100)*width/640.0), »
(int)((origin_graph(j].x+100)*width/640.0),
(int)((origin_graph(j].y+100)*width/640.0));

Ellipse(WakePaintDC,(int)((origin_graph{j).x-ellipse_size)*width/640.0),
(int)((origin_graph(j].y-cllipse_size)*width/640.0),
o (int)((origin_graph{j].x+ellipse_size)*width/640.0), »
(int)((origin_graph(j].y+ellipse_size)*width/640.0));

The velocity components are calculated at each radius and angle using the velocity
harmonics, which are stored in memory as global variables.
[/calculate the axial, radial, and tangential velocities for each angle » P
/ffirst, loop through the radii
for(k=0;k<NRWIN[component_flag);k++){
flinclude the Oth order terms . .
for(m=0;m<30;m++){ '
velocity[0][component_flag)[k][m]= XVA[k]{0]{0}[component_flag];
velocity 1]{component_flag]{k][m]= XVR[k]{0][0][component_flag];
velocity[2][component_flag][k][m]= XVT[k][0}{0}{component_flag]; »

//add the contributions of the higher order terms for the axial, radial,
//and tangential velocities
for(n=1,n<NHARMA [component_flag];n++) £

velocity[0}{component_flag]{k][m]=velocity[0O](component_flag]{k][m]+
XVA[k]{n][0]}{component_flag]*cos((n)*thetaim]);

velocity[0][component_flag][k]{m]=velocity[0][component_flag][k]{m]+
XVA[k](n][1]{component_flag]*sin((n)*theta[m]);
) } »
for(n=1;n<NHARMR [component_flag];n++){

334

@
e
o
L
@
®
®
®
®
o
a

velocity[1]{component_flag][k]{m]=velocity{1][component_flag)[k][m]+
XVR{k][n}[0){component_flag)*cos((n)*theta[m]);

velocity{1}[component_flag](k}{m]=velocity{1]{component_flag](k}[m]+
XVR[k][n]{1){component_flag]*sin((n)*theta{m]);

}
for(n=1;n<NHARMT[component_flag];n++){

velocity{2])[component_flag)[k}{m]=velocity[2]{componeat_flag](k][m]+
XVTik](n](0][component_flag]*cos((n)*thetajm]);

velocity{2](compoacat_flag][k]{m]=velocity|2][component_flag](k])(m]+
XVTik]{n]{1]{component_flag}*sin((n)*thetajm]);

}

The maximum and minimum values for the axial, radial, and tangential velocities

are then calculated using three nested for loops.

{/Nloop through the axial, radial, and tangential velocities for each radii
//and angle to find the maximum and minimum values

for(k=0;k<NRWIN[component_flag];k++)
{

for(n= axial; n<= tangential; n++)

for(m=0;m<30;m++)
{ .
max({n] = max(max|n],velocity{n][component_flag]{k]{m]);

min{n] = min(min{n],velocity{n}{component_flag]{k]{m]);
}

A velocity profile file formatted for use by PBD is then printed.

//open a file and write the wake velocities at a series of axial positions

// from upstream (x=-3.0) of the propeller to at least the XFINAL position
1/ specified in the PBD settings

//open the file, print a warning if unable to open the file

335

@e o

@

if ((out = fopen(“currpbd.vel®, “w")) == NULL) {
. MessageBeep(MB_ICONEXCLAMATION), ’

Wad, "Unable to open file ‘currpbd.vel'.”,
*WARNING!", MB_ICONSTOP | MB_OK | MB_TASKMODAL);

)
. else ®

{/calculate the number of axial positions to output data for
J = (int)}((XFINAL/L.5)+3);
. /fpeint the header line ’
fprintfout,"ZONE T="Inflow”, I= %d, J= %d, F=POINT\n",J, NRWIN[0});
/Noop through radii at which the wake is specified
¢ for (i=0;i<NRWINI[0];i++)]
{Nloop through each axial position
for(ax_pos=-3.0; ax_pos<=XFINAL; ax_pos+=1.5)

e //print the axial position, radius, axial velocity, radial velocity, and > @
// tangential position

fprintflout,” %f %E %f % %f\n", ax_pos, XRWIN[i][0),
velocity[0][0]{i][0], velocity[1][0](i]{0}, velocity[2]{O][i}[0]);

° Jiciose the file >’
fclose(out);
}

~n
The difference between the maximum and minimum values to be plotted for each

of the three plots is calculated and adjusted. The minimum and maximum values are
labeled on the plots.

/Noop through the axial, radial, and tangential plots, determine
// the maximum and minimum values that will be used on the plots,
/1 draw the values on the plots, then draw the polylines on the plots

for(n= axial; n<= tangential; n++){

//calculate the differential between the maximum and minimum values
delta = max[n]-min{n];

336

/Af the differential is close 10 zero, sct the differential 0 0.1
if{deita<del) min[n] = min{n}-0.1;

//recalculate the differential and widen the range 30 that the max
// and min velocities do not plot exactly on the limits of the graphs

deita = max{n]-min{n};
max(n] = max{n] + 0.1%deita;
min(n] = min[n] - 0.1*delta;
//draw the min value on the plot
length = sprintf{buffer,*%4.3f", min[a]);

TextOut(WakePaintDC, (int)((origin_graph{n].x+40)*width/640.0),
(int)((origin_graph[n].y+80)*height/480.0), buffer, length);

//draw the max value on the plot
length = sprintQbuffer, *%4.3f",max[n]);
TextOut(WakePaintDC, (int)(origin_graph{n)].x-95)*width/640.0),
(int)((origin_graph[n].y-95)*height/480.0), buffer, length);

The velocity profile for each plot is drawn as a series of polylines corresponding to
the different radii. The angle corresponds to the angular position relative to the hub and
the magnitude is the magnitude of the velocity component.

{/Nloop through each of the radii

for(k=0;k<NRWIN[component_flag];k++)
{

//select the pen corresponding to the appropriate radius
SelectPen(WakePaintDC,hColorPen(k});

//calculate the x and y value in screen coordinates for each angle
//and velocity and store in the points array

for(m=0;m<30;m++)
{ .

points{m].x= (int)X(origin_graph[n].x+
(((velocity[n]{component_fiag][k){m]-min{n])*ellipse_size/
(max[n]-minn]))*cos((pi/2.0)+theta{m])))*width/640.0);

337

e
Wit

e

e

3

o

points{m}.y= (int)((origin_graph[a).y-
(((velocity{n]{componcnt_fiagl(k]{m}-min{n])*ellipse_size/
(max|a]-min(n]))*sin((pi/2.0)+theta[m])))*height/480.0);
}
//close the polyline by setting the final point equal to the first

points{30). x=points{0).x;
points{30].y=points{0].y

//draw the polyline
Polyline(WakePaintDC,points,31);
}

A key is drawn to indicate the correlation between the pen colors and styles and
the radii.
//draw the key
/ffirst, draw the heading

length = sprintRbuffer, “Radius”);

TextOut(WakePaintDC,(int)(origin_key.x*width/640.0),
(int)((origin_key.y+15)*height/480.0), buffer, length);

TextOut(WakePaintDC,(int)((origin_key.x+70)*width/640.0),
(int)((origin_key.y+15)*height/480.0), buffer, length);

/fwrite each value of radius

for(k=0;k<min(10,NRWIN|component_flag]);k++)
{
length = sprintf{buffer, *%3.2f* XRWIN[K][component_flag]);

TextOut(WakePaintDC, (int)(origin_key.x*width/640.0),
(int)((origin_key.y-+45+k*15)*height/480.0), buffer, length);

Ilseleeuheappmpﬁmpenanddrawaredangleindiwingd\epcn
{/style and color

SelectPen(WakePaintDC,hColorPen[k]);
Rectangle(WakePaintDC,(int)((origin_key.x+40)*width/640.0),

(int)((origin_key.y+48+k*15)*height/480.0),
(int)((origin_key.x+50)*width/640.0),

338

(int)((origin_key.y+57+k*15)*height/480.0));
}
/Af there are more than 10 radii, draw another column the same way

i(mmwm(w_mgn

leagth = sprintf(buffier, "Radius"),
TextOut(WakePaintDC,(int)((origin_key.x+70)*width/640.0),
(int)(origin_key.y+15)*height/480.0), buffer, length);

ﬁo{t(k-lomwmleompom_ﬂagJW)
length = sprintRbuffer, *%3.2f", XRWIN[k}{component_flag]);

TextOut(WakePaintDC, (int)((origin_key.x+70)*width/640.0),

¥
13
g
£
S
i
g
¥
&>

(int)((origin_key.y+45+(k-10)*15)*height/480.0), buffer, length); .
SelectPen(WakePaintDC, hColorPen[k]);
Rectangle(WakePaintDC, (int)((origin_key.x+110)*width/640.0),
(int)((origin_key.y+48+(k-10)*15)*height/480.0), \
(int)((origin_key.x+120)*width/640.0), , ®
(int)((origin_key.y+S7+k-10)*15)*height/480.0)); ,

} r
}

After the plots are complete, the original pen, font, and brush are selected back ‘7
into the device context and the pens, fonts, and brush created for this function are deleted.

The paint process is then terminated.

//select the standard pen and brush styles

SelectFont(WakePaintDC,hOldFont);
SelectPen(WakePaintDC,hOldPen);
SelectObject(WakePaintDC,hOldBrush),

SR T

2 duf

//delete objects that were created but are not cusreatly selected into the £
//device context ,
for(i=0;i<20;i++) DeleteObject(hColorPenlil);
DeleteObject(hBrush),
DeleteFont(hFont);
DeleteObject(hThickPen);

s

R R

339

//closs out the paint command
EadPaint(hWnd, &ps);

C.43 The paintplot functica.

The paintplot function uses the draw function to draw the PLL plots on the Plot
Viewer window. The paintplot function does not provide printed output. The paintplot
function receives the handle of the Plot Viewer window as an argument. It passes a
screen location, a pointer to the data array to be plotted, the index of the plot name, and
the handle of the screen device context to the draw function. Both functions are shown
below.

void paintplot(HWND hWnd)
{

‘dechuvanﬁlatlntmdeﬂnedmthepllcﬁlemdthat *
* will be used in this function

. /

extern int project_flag, plot_page, draw_plot_flag;

extern flost CHORDINPUT{max_comp}{max_rad],
PITCHANGLEUNDISTURBED{max_comp]{max_rad],
CHORDCALC|[max_comp}{max_rad],
PITCHANGLEINDUCED{max_comp]{max_rad],

UAINEFFECTIVE[max_comp]imax_rad},
UTIN[max_comp]{max_rad],
UAINDUCED{max_comp}{max_rad],
UTINDUCED{max_comp]{max_rad},

THICKNESS[max_comp]{max_rad],
CIRCULATIONINPUT[max_compjfmax_rad],

DRAG|max_comp){max_rad],

CIRCULATIONCALC[max_comp]{max_rad],

LOCALCL[max_comp){max_rad],
LOCALCTImax_comp]{max_rad],
LOCALCQfmax_comp}{max_rad),
CAVITATIONNUMBER|[max_comp][max_rad];

340

]
»
&
»
[
»
» ©

foe * * ‘
* Varishle declarations . ’
. sssvave :

HDC PlotPaintDC; //Mandle of the device context
PAINTSTRUCT ps; /fpaint structure ‘

The paintplot function prepares the Plot Viewer window for painting using the
BeginPaint function. If there is no open project, or if the draw_plot_flag has not been set,

the bulk of the code is skipped and the paint process is terminated. .
llcreate the device context
PlotPaintDC = BeginPaint(hWnd, &ps);
lfoaly piot the parameters if a project is currently open and the draw flag has been set .
if{(project_flagl&&(draw_piot_flag)){

The paintplot function evaluates the plot_page flag. This variable indicates which
of the four PLL plot pages is to be drawn. Each of the four cases makes four calls to the ’ *
draw function. The draw function receives an index that determines the location on the s
screen where the plot is to be drawn, the address of the first parameter value to be plotted, ;
an index of the name of the plot, and the handle of the device context. ’7

//plot the appropriate page of output by passing an index for the position of each graph, the address of the
1/ appropriate parameter, mmmngﬂnmaloanonomnplotnammdahandletotbe

11 device context, for each graph
:Wiw_ﬁﬂe) .
case 0: { i
draw(0,&CHORDINPUT{O]{0], 0,PlotPaintDC);
draw(1,&PTTCHANGLEUNDISTURBED{0}(0), 9 PlotPaintDC); a
draw(2, & CHORDCALCI0}[0}, 1. PlotPaintDC), :
draw(3 &PITCHANGLEINDUCED{0}{0], 10,PlotPaintDC); i
break; "

) :
case 1: { ;‘
draw(0, &UAINEFFECTIVE[0}{0], 6. PlotPaintDC); v

341

[P - o P s e e e o . o A - - R s

draw(1,2UTIN(0](0],
draw(2, RUAINDUCED/{0]{0},
draw(3,2UTINDUCED{0}(0},

beeak;
}

case 2: {

draw(0,& THICKNESS|0}{0},
draw(1,&CIRCULATIONINPUT]0}{0),
draw(2,&DRAG{0){0},
draw(3,&CIRCULATIONCALC{0}{0),

break;
}

case 3: {
draw(0,&LOCALCL{0][0],

draw(1, &LOCALCTI0][0],
draw(2, &LOCALCQ{0]{0],

draw(3,& CAVITATIONNUMBER|[0][0],

break;
}

After the plotting is complete, the paint process is terminated.

//close out the paint command

separate pages for each component, or with both components on the same plots. The
plots are drawn on the screen. This function does not produce printed output.

void draw(int graph_origin_index, float *parameter, int plot_name_index, HDC PlotPaintDC)

{

EndPaint(hWnd, &ps);

The draw function draws cartesian plots of the PLL graphical output on four

13,PlotPaintDC);
14,PlotPaintDC),
15,PlotPaintDC);
16,PlotPaintDC),

‘dedmvuﬂluthmmdcﬁnedmthepllcﬁlemdﬂm

* will be used in this function

*

342

S~

» 7
.

extern int plot_page, plot_component_flag, draw_plot_flag, LDEV;
extern int number_radii[max_comp};

extern float RADIUS[max_comp}|{max_rad};

I
* Variable declarations *
o ot ettt . . sorsssssasssstsseny
HBRUSH hBrush, Iforushes for drawing on the
hOldBrush; //screen
HPEN hPlotPen[4](2], //pens for drawing plots
hStandardPen,
hOidPen;
HFONT hFont, //fonts for drawing alphanumerics
hMediumFont,
hSmallFont,
hOldFont;
LOGFONT IFont; /Nogical font structure for
// creating the fonts
POINT origin_graph[4]= //points defined to locate the
{{0,10}, // origins of the plots
{320,110},
{0,220},
{320,320}},
left={40,15}, //points that define the extents
right={290,105}, /1 of the plot rectangles
point{max_rad]; //point structures used to plot
// the parameters in the
/1 form of polylines
int decimal_places, /findicator of decimal places to
// display for y-axis labels
length, /Nength of character strings
i=0, j, /lcounters
shift=3; //number of pixels to shift
1/ y-axis labels
char buffer{120]; //character string used for
// text output
float max_value=-10.0, //max value of parameter
min_value=10.0, //min value of parameter
delta, //(max-min) for parameter
width, height; //display size scaled to 640/480
char plot_name[17]{40)={ //plot labels
L J o ® L

>

*CHORD DISTRIBUTION INPUT",
*CHORD DISTRIBUTION CALCULATED",
*THICKNESS DISTRIBUTION INPUT",
*CIRCULATION INPUT",

"CIRCULATION CALCULATED",

*AXIAL INFLOW VELOCITY, NOMINAL"®,
*AXIAL INFLOW VELOCITY, EFFECTIVE",
"DRAG COEFFICIENT",

*TANGENTIAL INFLOW VELOCITY",
“UNDISTURBED PITCH ANGLE",
"INDUCED PITCH ANGLE®,

*INDUCED AXIAL VELOCITY",
"INDUCED TANGENTIAL VELOCITY",
"LOCAL LIFT COEFFICIENT",

"LOCAL THRUST COEFFICIENT",
*LOCAL TORQUE COEFFICIENT",
"LOCAL CAVITATION NUMBER"};

The size of the display area is calculated to ensure device independence. Small,
medium, and normal size fonts, as well as a hollow brush and eight pens are created for
the purpose of drawing the output.

//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats

width = (float)GetDeviceCaps (PlotPaintDC, HORZRES),
height = (float)GetDeviceCaps (PlotPaintDC, VERTRES),

//since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that aspect ratio

if((width/height)>(4.0/3.0))
width = height*(4.0/3.0);

else
height = width*(3.0/4.0);

//create fonts for drawing alphanumeric output

hFont = GetStockFont(DEVICE_DEFAULT_FONT);

GetObject(hFont,sizeoff LOGFONT),&1Font);
IFont.1fHeight = -8;

hSmallFont = CreateFontIndirect(&|Font);

GetObject(hFont,sizeof LOGFONT),&1Font);

IFont.lfHeight = -10;

344

hMediumFont = CreateFontindirect(&1Font);
J/create and select a hollow brush so that ellipscs and rectangles will
// not overwrite pre-existing graphical output, also save a handle to the
// original brush

hBrush = GetStockObject(HHOLLOW_BRUSH);
bOidBrush = SclectObject(PlotPaintDC, hBrush);

l/create pens for drawing plots
hPlotPen{0][0] = CreatePen(PS_SOLID, 1, RGB(255,0,0));
hPlotPen]1]{0] = CreatePen(PS_SOLID, 1, RGB(0,255,0));
hPlotPen(2][0] = CreatePen(PS_SOLID, 1, RGB(0,0,255));
hPiotPen[3}{0] = CreatePen(PS_SOLID, 1, RGB(255,0,255));
hPlotPen[0]{1] = CreatePen(PS_DOT, 1, RGB(255.0,0));
hPlotPen{1]{1] = CreatePen(PS_DOT, 1, RGB(0,255,0));
hPiotPen[2]{1] = CreatePen(PS_DOT, 1, RGB(0,0,255));
hPlotPen(3]{1] = CreatePen(PS_DOT, 1, RGB(255.0,255));

hStandardPen = CreatePen(PS_SOLID, 1, RGB(0,0,0));

//select the medium font for labeling the plot

hOldFont = SelectFont(PlotPaintDC,hMediumFont);

The plot is labeled, and the graph is made by drawing a series of rectangles. The x
axis is then labeled.
//read the plot name into the buffer and write the plot name
while(plot_name[plot_name_index][i]'=NULL){

buffer|i] = plot_namefplot_name_index][i];

i+

*

}
TextOut(PlotPaintDC, (int)((origin_graph[graph_origin_index].x+50)*width/640.0),
(int){(origin_graph|graph_origin_index).y)*height/480.0), buffer, i);

//select the standard pen and draw the graph for plotting the parameter by
//drawing a series of rectangles

hOldPen = SelectPen(PlotPaintDC, hStandardPen);
for(i=0;i<5;i++) {
Rectangle(PlotPaintDC,

345

(int)((origin_graph{graph_origin_index).x+left.x+i*25)*width/640.0),
(intX(origin_graph{graph_origin_index].y+lcR.y)*height/480.0),
(int)((origin_graph{graph_origin_index].x+right.x-i*25)*width/640.0),
(int)((origin_graph|graph_origin_index].y+right y)*height/430.0));

Rectangle(PlotPaintDC,
(int)(origin_graph[graph_origin_index}.x+left.x)*width/640.0),
(int)(origin_graph{graph_origin_index].y+lef.y+i*9)*heigt1/480.0),
(int)((origin_graph{graph_origin_index].x+right x)*width/640.0),
(int)((origin_graph[graph_origin_index].y+right y-i*9)*h:1ght/480.0));

}
Rectangle(PlotPaintDC,

(int)((origin_graph{graph_origin_index].x+left.x)*width/640.0),

(int)((origin_graph[graph_origin_index).y+left.y)*height/480.0),

(int)((origin_graph{graph_origin_index].x+eft.x+125)*width/640.0),

(int)((origin_graph{graph_origin_index].y+right.y)*height/480.0));

Rectangle(PlotPaintDC,

(int)((origin_graph{graph_origin_index].x+lef.x)*width/640.0),

(int)((origin_graph{graph_origin_index].y+left.y+45)*height/480.0),

(int)((origin_graph[graph_origin_index].x-+right.x)*width/640.0),

(int)((origin_graph(graph_origin_index].y+right.y)*height/480.0));

//select the small font and label the x-axis of the plot

SelectFont(PlotPaintDC, hSmaliFont);

for(i=0;i<11;i++){

length = sprintf(buffer, *%2.1{",i/10.0);

TextOut(PlotPaintDC,

(int)((origin_graph[graph_origin_index].x+left.x-5+i*25)*width/640.0),

(int)((origin_graph(graph_origin_index].y+right.y+10)*height/480.0),

buffer, length);

}

A switch is used in calculating the maximum and minimum values to be plotted. If
the plot_component_flag is zero or one, then only the first or second component is
considered. Otherwise both components are considered since they will be plotted
together.

//if the plot_component_flag is one or two, look at only that component to
/ffind the maximum and minimum values to plot, otherwise consider both

switch(plot_component_flag<2)
{

346

case false:
{

for(=0,7<2j++)
for(=0;i<aumber_radiifj};i++) {

max_value =
max(max_value,parameter{j*max_rad+i]);

min_value =
min(min_value,parameter{j*max_rad+i]);
}
break;}
case true:
L S
for(i=0;i<number_radii[plot_component_flag];i++){
max_value =
max(max_value,parameter{plot_component_flag®*max_rad+i));
min_value =
min{min_value,parameter{plot_component_flag*max_rad+i]);
}
break;}
}
The maximum and minimum values are adjusted to a reasonable range for the plot
and the y axis scale is plotted with the appropriate number of significant digits.

//adjust the maximum and minimum values such that the range of the plot
//is reasonable and the values are printed to the correct number of

/significant digits

/fif the maximum value is greater than zero, use logs to establish the
//maximum value as a round number slightly higher than the maximum value,
//otherwise set the maximum value to 0.0
ifimax_value >= del)
max_value = pow(10.0,floor(log10(max_value)))*
(1.0+floor(max_value/(pow(10.0,floor(log10(max_value))))));

clse if{max_value <= -del)

K 7

it

QO RO ks, e Sk i

-

ATINE T w

B :'..n,’.-.wx:

max_value = 0.0;
/fif the minimum value is less than zero, use logs to establish the
//minimum value as a round number slightly lower than the minimum value,
//otherwise set the minimum value to 0.0
ikmin_value <= -del)
min_value = -(pow(10.0,floor(log 10(fabs(min_value))))*

(1.0+loor(fabs(min_value)/(pow(10.0,floor(log 10(fabs(min_valuc))))))));

else if{min_value >= 0)
min_value = 0.0;

//if the maximum and minimum values are very close together, spread them
//apart slightly

if{max_value - min_value<del)
{ max_value = max_value +0.1;
if{(min_value - 0.1)> 0.0)

min_value = min_value - 0.1;

}
/ffind the difference between the maximum and minimum values
delta = max_value - min_value;
//initialize the decimal_places indicator
decimal_places = 2; |
if(fabs(max_valuc)>del)

decimal_places =
min(floor(log 10(fabs(max_value))),decimal_places);

if{ffabs(min_valuc)>del)

decimal_places =
min(floor(log10(fabs(min_value))),decimal_places);

~~

/Nabel the y-axis based on the value of the decimal_places indicator

switch(decimal_places){
case 2:
{
348
®] o @ ®

Sor(i=0;i<1 L;i++){
v:. ‘

length = spristf(buffer, *%d",(int)(max_value-((i*deita)/10.0))); Q
TextOut(PlotPaintDC,(int)((origin_graph{graph_origin_index).x+eft.x+ - ‘

shift*4-40)*width/640.0), .

(int)((origin_graph{graph_origin_index).y+left y-

3+i*9)*height/480.0), buffier, leagth); 5

} .

break; }

case 1: |

‘]
for(i=0;i<11;i++){
length = sprintf(buffer, *%5.0f", max_value-((i*delta)/10.0));
TextOut(PlotPaintDC,(int)((origin_graph[graph_origin_index].x+left.x+ ’

shift*3-40)*width/640.0),
(int)(origin_graph{graph_origin_index].y+lefl.y-
3+i*9)*height/480.0), buffer, length);
; ’
break;}

case 0:

{ »’
for(i=0;i<11;i++){ |
length = sprintfibuffer, "%S. 1f*,max_value-((i*delta)}/10.0));

TextOut(PlotPaintDC, (int)((origin_graph{graph_origin_index).x+left.x+ »
shift*3-40)*width/640.0),
(int)((origin_graph[graph_origin_index].y+left.y-
3+i*9)*height/480.0), buffer, length);
}
[]
break;}

case -1:

{
for(i=0;i<11;i ’

AR Hog sl :
leagth = sprintfibuffer, "%5.2f",max_value-((i*deita)/10.0));
349 _
Q
N N) 9 e o

TextOut(PlotPaintDC, (int)((origin_graph{graph_origin_index).x+eft.x+

shift*2-40)*width/640.0),
(int)((origin_graph{graph_origin_index].y+left.y-
3+{%9)*height/480.0), buffer, length);
}
break; }
case -2:
{
for(i=0;i<11;i++){

length = sprintf{buffer, “%5.3f*, max_value-((i*delta)/10.0));
TextOut(PlotPaintDC,(int)((origin_graph[graph_origin_index].x+left.x+

shift*1-40)*width/640.0),
(int)((origin_graph{graph_origin_index].y+left.y-
3+i*9)*height/480.0), buffer, length);
}
break;)
default ;
{
for(i=0;i<1 1;i++){

length = sprintf{buffer, "%5.4f",max_value-((i*delta)/10.0)),
TextOut(PlotPaintDC, (int)((origin_graph;graph_origin_index].x+left.x-

40)*width/640.0),

(int)(origin_graph([graph_origin_index].y+left.y-
3+i*9)*height/480.0), buffer, length);

}

break; }
}
lisclect the normal size font for plotting the key and page #
SelectFont(PlotPaintDC, hFont);

350

(?j

P

T

The plot is drawn using a switch to determine if one or both of the components
¢ should be plotted. The plots are drawn with polylines, using circles to mark the individual
points. The solid pens are used for the single component plots and for component one on
the dual component plots. The dotted pens are used for component two on dual
component plots.

/Af the plot_component_flag is one or two, plot oaly the values for that component, otherwise plot both
// on the same graph

< switch(plot_component_flag<2) .
{

case false:
{

/Noop through the two components for the case where both will be plotted together »
for(7=0,j<2;j++)}{
//select the color pen for the appropriate graph

SelectPen(PlotPaintDC, hPlotPen[graph_origin_index}[0]); . q

/Noop through the points to be plotted, and for cach point calculate and store the x and y coordinates to
{/ be plotted also draw a circle using the solid pen to indicate the location of the point

for(i=0;i<number_radiilj);i++) {

¢ point{i].x = (int)(origin_graphgraph_origin_index].x+
left x+RADJUSj)[i]*250)*width/640.0);

pointfi].y = (int)(origin_graph|graph_origin_index].y+
left.y-«((parameter{j*max_rad+i]-max_value)/ ‘
delta)*90)*height/430.0); []
Ellipse(PlotPaintDC, point]i]. x-2,point]i).y-2,point]i). x+2,
pointfi]l.y+2);)
. {/sclect the style and color pen for the appropriate component and graph .
SelectPen(PlotPaintDC, hPlotPen|graph_origin_index][j]);
/lplot the polyline '

Py y Polyline(PlotPaintDC,point,number_radii[j]); p

//plot the key for the page

351

for(F0y<2+ X
/Mwrite the "Component #*
length = sprintf{buffer, "Component #%d" j+1),
TextOut(PlotPaintDC, (int)(50*width/640.0),
(int)((400+j*20)*height/480.0), buffer, length); »
//using the appropriate pen, draw a line that indicates which polyline
/fis component #1 and which is component #2

SelectPen(PlotPaintDC hPlotPen[0]jD);
MoveTo(PlotPaintDC, (int)(170*width/640.0), ’
(int)((408+j*20)*height/480.0));
LineTo(PlotPaintDC,(int)(185°width/640.0),
(int)((408+j*20)*height/480.0));
[} .
break;}
case true:
: { » o

//select the color pen for the appropriate graph
SelectPen(PlotPaintDC, hPlotPen(graph_origin_index][0]);
/floop through the points to be plotted, and for each point calculate and '

' //store the x and y coordinates to be plotted
//also draw a circle using the solid pen to indicate the location of the

Ifpoint
for(i=0;i<number_radiifplot_component_flag);i++){

' pointfi).x = (int)((origin_graph{graph_origin_index].x+
left. x+RADIUS[plot_component_flag][i}*250)*width/640.0);

pointli].y = (int)((origin_graphgraph_origin_index].y+
left.y<((parameter{plot_component_flag®max_rad+i]-

' max_value)/delta)*90)*height/480.0); »
Ellipse(PlotPaintDC, point[i}.x-2,point[i].y-2,point{i}.x+2,point{i].y+2);

}
//select the color pen for the appropriate graph

! Polyline(PlotPaintDC,point,number_radii[plot_component_flag]);
//write the "Component #° and draw a line that indicates the pen style and

352

Iicolor
leagth = sprintf{buffer, “Component #%d",plot_component_flag+1);
TextOut(PlotPaintDC, (int){ 50*width/640.0),
(int)(400*height/480.0), buffer, length);

break;}
}

The page number is drawn to the screen. The original pen, brush, and font are
selected back into the device context, and the fonts, pens, and brush created for this
function are deleted.

Iwrite the "Page #°
length = sprintf{buffer, “Page #%d",plot_page+1),

TextOut(PlotPaintDC,(int)(50*widih/640.0),
(int)((380)*height/480.0), buffer, length);

//restore the original brush, font, and pen
SelectObject(PlotPaintDC, hOldBrush);
SelectPen(PlotPaintDC,hOldPen);
SelectFont(PlotPaintDC,hOldFont);

//delete the brushes, pens, and fonts
DeleteObject(hBrush);
DeleteObject(hFont);
DeleteObject(hMediumFont);
DeleteObject(hSmallFont);
DeleteObject(hStandardPen),
for(i=0;i<2;i++)

for(=0j<4j+)
DeleteObject(hPlotPen(j)[i});

C.4.4 The printplot function.
The printplot function is almost exactly the same as the paintplot function. The

printplot function is used to draw the same output as the paintplot function, but it is drawn

353

to the printer instead of the monitor. The printplot function receives the handle to the
printer device context after the printer device context has already been prepared for
painting. The printplot function uses the drawprint function in the same way that the
paintplot function uses the draw function. Since the functions are nearly exactly alike, the

printplot and drawprint functions are not shown here and instead are listed in the final >
section of this appendix.
C.4.5 The paintout function. >
The paintout function is used to draw text output files to the Output Viewer
window on the monitor. The paintout function receives the handle to the Output Viewer
| window. >
void paintout(HWND hWnd)
{
’M e
\ * declare variables that are defined in the pll.c file and that will be used in this function * » PY
es . soe sssssseny
extern int project_flag, Scroll_Pos, LinesInWindow, Total_Lines,
output_flag, text_color, LineHeight;
) N ssessene - e [
* Variable declarations . '
. . »e srareenee
HDC OutPaintDC; /Mandle of the device context
-d. »
' PAINTSTRUCT ps; //paint structure ’
RECT rect; {/rectangle structure for
// defining the text region
) HFONT hFont, /ffonts for text output
hSmallFont, ®
hOldFont; fforiginal font
LOGFONT {Font; /Nogical font structure for
/I creating fonts
' char OUTFILE(14]; /fa character string indicating »
/1 the output file
354

char * buffer, //pointer 10 a character buffer
iM num_bytes; /imumber of bytes read by _iread
flost width, //display size scaled to 640/480

height; // used to scale the polar plots
HFLLE in; /ffile handle

The paintout function uses the BeginPaint function to prepare the window for
painting. If the there are no PLL or PBD output files, the bulk of the code is skipped and
the paint process is terminated. If there are output files to display, the malloc function is
used to allocate enough memory to store a file of the size specified by max_buf sz
parameter. The ma;(__buf__sz parameter is defined in the header.h file as 10000.
licreate the device context

OutPaintDC = BeginPaint(hWnd, &ps);

//only draw output if there is a project open and files to be drawn

if{(project_flag)&.&((access("summary.out”, 0) == 0)|j(access("pbdout.ktq", 0) == 0))){
//allocate memory for reading the file into

buffer = (char *) malloc(max_buf_sz)*sizeof (char));

The size of the display area is determined and scale factors are calculated for the

purpose of making the output device independent.

//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats

width = (float)GetDeviceCaps (OutPaintDC, HORZRES),
height = (float)GetDeviceCaps (OutPaintDC, VERTRES);

//since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that agpect ratio

if{(width/height)>(4.0/3.0))

width = height*(4.0/3.0);
else

height = width*(3.0/4.0);

355

S e e

Q
i
N
@
v 5
-
i
g“,

%

A

._’:Q, ¢ i e e

,-.e-v.*-r-:‘,a;.rw R P

A rectangle is initialized for use with the DrawText function, scaled to the
dimensions of the device context display area. Small and normal sized fonts are then

created for painting the text output.
/finitialize the rectangle for displaying the file
rect left = (int)(20*width/640.0); ’
rect.right = (int)(625*width/640.0;;
rect.iop = (int)(15%height/430.0);
rect.bottom = (int)(6000*height/480.0);
//get a handle to the device default font »
hFont = GetStockFont(DEVICE_DEFAULT _t+ONT);
//use the device default font to fill a logical font structure
GetObject(hFont,sizeoffLOGFONT),&1Font); »
//alter the font size and create a small font
IFont.lfHeight = -11;
hSmallFont = CreateFontindirect(&1Font); » PY
The global integer variable, text_color, is used in a switch to set the color of the
text drawn to the screen. The blue, green, red, and black values are defined in the
header.h file. The SetTextColor receives a handle to a device context and a RGB color » ."
value and sets the device context text color to the RGB value.
//this switch sets the text color based on the value of the text_color flag
switch(text_color) »
{case blue: { SetTextColor(OutPaintDC,RGB(0,0,128)); break; }
case green: { SetTextColor(OutPaintDC,RGB(0,128,64)); break; }
case red: { SetTextColor(OutPaintDC,RGB(255,0,0)); break; }
}cnse black: { SetTextColor(OutPaintDC,RGB(0,0,0)); break; } »
The OUTFILE variable is a character array that is used with the _lopen function to
open the appropriate output file. The content of the OUTFILE variable is determined by a »
switch that tests the output_flag variable to determine which file is to be printed.
356
®
o ® ® ® e o @ e ©

{ithis switch writes the appropriate fi'e name into the OUTFILE

switch(output_flag)

{
Casc summary: { strepy(OUTFILE,"summary.out\0"); break; }
case downstream_velocities: { strepy(OUTFILE, “fards.out\0"); break;}
case duct_geometry: { strcpy(OUTFILE, "duct.geo\0"); break;}
case abs_rules_calc: { strepy(OUTFILE,"stress.out\0"); break;}
case detailed1: { strcpy(OUTFILE,"detail 1.0ut\0"); break; }
case detailed2: { strcpy(OUTFILE, "detail2.out\0"); break; }
CAsc non_axisym_cir: { strcpy(OUTFILE,"nonaxi.cir\0"); break;}
casc non_axisym_for: { strcpy(OUTFILE, "nonaxi.for\0"); break;}
case non_axisym_cmp: { strcpy(OUTFILE,"nonaxi.cmp\0"); break;}
casc non_axisym_har: { strcpy(OUTFILE, "nonaxi.har\0"); break;}

\ case pbdktq: { strcpy(OUTFILE, "pbdout.ktq\0*); break;}

The appropriate output file is opened using the _lopea function and read using the

_lIread function. The file is then closed using the _lclose function.

/lopen, read into the buffer, and close the data file
in = _lopen(OUTFILE, READ);
num_bytes= _lread(in, buffer, max_buf_sz);

_lclose(in);

The small font is selected into the device context prior to painting the output. The
vertical extents of the rectangle structure that will be used with the DrawText function to
paint the output are adjust based on the position of the scroll bar and the height of a lire of
text in the Output Viewer window.

//select the small font and save a handle to the original font
hOldFont = SelectFont(OutPaintDC,hSmallFont);

//adjust the top and bottom of the temporary rectangle structure to account for the position of the vertical
1/ scroll bar position

rect.top =rect.top - Scroll_Pos*LincHeight;
rectb.ttom = rect.bottom - Scroll_Pos*LincHeight;
357
(
® o ® o [o (
— ; RT-ATOoN _ S

The next executable line of code uses the DrawText function to paint the output
¢ file onto the Output Viewer window. The DrawText function receives a handle to a

o

@

device context, the address of the string to be drawn, the number of bytes to draw, the
address of a rectangle structure that describes the region where the text is to be drawn,

¢ and flags that describe how the text is to be drawn. The function returns the height of the
text that was drawn. This statement divides the return value by the height in pixels of a
line of text to determine the total number of lines of text painted and assigns the value to

¢ the Total_Lines variable. The flags used are described below:
DT_LEFT- causes the text to be left aligned.
DT_WORDBREAK- causes lines to be broken between words if a word would extend
¢ past the edge of the display rectangle
DT_NOCLIP- draws the text without clipping
DT_NOPREFIX- turns off the processing of prefix characters
®
{/draw the text file in the region defined by rect and calculate the total number of lines of text to draw
Total_Lines=(int)}(DrawText(OutPaintDC,buffer,num_bytes, &rect,
DT_LEFTIDT_WORDBREAK|DT_NOCLIP[DT_NOPREFIX)/LincHeight);
‘ The scroll range is then set based on the total number of lines of text displayed in
the Output Viewer window, using the SetScrollRange function. The SetScrollRange
« function receives a handle to the window associated with the scroll bar that is to have its
range set, a scroll bar flag that specifies the bar to set, the minimum and maximum scroll
bar settings in the range, and a redraw flag that specifies in this case that the scroll bar is
. to be redrawn.
//set the range of the scroll bar to the total number of lines so the range covers the entire text region
SetScrollRange(hWnd, SB_VERT, 0, Total_Lines, TRUE);
e
358
e
® ¢« 0 o o S ° o K

r___—'—_t

@

The original font is selected back into the device context, the memory used to
store the text is freed, and the fonts created for this function are then destroyed. The paint
process is then terminated.

//select the original font back into the device context
SelectFoant(OutPaintDC,hOldFont);

/free the allocated memory
free(buffer),

//delete the fonts created for this function
DeleteFont(hFont),
DeleteFont(hSmallFont),

//close out the paint command

EndPaint(thWnd, &ps);

C.4.6 The printout function.

The printout function is used to draw text output files to the system printer. The
function is nearly identical to the paintout function in section C.4.5 above. The printout
function receives the handle to the printer device context. The only other difference is that
it does not use any of the variables associated with the scroll bar. The function is shown

below.

{

‘declarevmablesthatmdeﬁnedmdwpllcﬁleandthat b
‘wnllbeusedmthlsﬁmcuon

. e e/

extern it output_flag, text_color;

!
* Variable declarations *

359

&%/

RECT rect,

HFONT hFont,

hOldFont,

char OUTFILE[14];

char ¢ buffer;

int num_bytes;

float width,
height;

HFILE in;

//allocate memory for reading the file into

buffer = (char *) malloc((max_buf_sz)*sizeof (char))

!

I/rectangle structure for
/1 defining the text region

/ffont for text output
//original font

//a character string indicating
// the output file

//pointer to a character buffer
//number of bytes read by _lread

//display size scaled to 640/480
//used to scale the polar plots

/ffile handle

//determine the width of the display in pixels and the height of the display in raster lines and cast

// them as floats

width = (float)GetDeviceCaps (OutPaintDC, HORZRES);
height = (float)GetDeviceCaps (OutPaintDC, VERTRES);

//since the normal display aspect ratio is 4 to 3, ensure that the graphical

// output made by the program is in that aspect ratio

if{(width/height)>(4.0/3.0))

width = height*(4.0/3.0);
else

beight = width*(3.0/4.0);

//initialize the rectangle for displaying the file

rect left = (int)(20*width/640.0);
rect.right = (int)(625*width/640.0);
rect.top = (int)(15*height/480.0);

rect.bottom = (int)}(6000*height/480.0);
//select the device default font and save a handle to the original font
hFont = GetStockFont(DEVICE_DEFAULT_FONT)
hOldFont = SelectFont(OutPaintDC, hFont);
//this switch sets the text color based on the value of the text_color flag

switch(text_color)

360

p—

{
case blue: {SetTextColor(OutPaintDC, RGB(0,0,128)); break; }
case green: { SetTextColor(OutPaintDC,RGB(0,128,64));break; }

case red: {SetTextColor(OutPaintDC RGB(255,0,0)); break; }
case black: {SetTextColor(OutPaintDC,RGB(0,0,0)); break; }
}
//this switch writes the appropriate file name into the OUTFILE
:wiwh(wu_ﬂu)
Case summary: { strepy(OUTFILE,"summary.out\0"); break;}
case downstream_velocities: { strepy(OUTFILE, "fards.out0”); break;}
case duct_geometry: { strcpy(OUTFILE, "duct.geoV”); break:}
case abs_rules_calc: { strepy(OUTFILE,"stress.out\0"); break;})
case detailedl: { strcpy(OUTFILE, "detail 1.out\0"); break;}
case detailed2: { strepy(OUTFILE,"detail2.out\0*); break;}
case non_axisym_cir: { strcpy(OUTFILE, "nonaxi.cir0");, break;}
case non_axisym_for: { strcpy(OUTFILE, "nonaxi.for\0"); break;}
casc non_axisym cmp: { strcpy(OUTFILE, "nonaxi.cmp\0”); break;}
case non_axisym_har: { strcpy(OUTFILE, " "nonaxi.har\0"), break;}
case pbdktq: { strcpy(OUTFILE,"pbdout.ktq\0"); break;}

}
//open, read into the buffer, and close the data file
in=_lopen(OUTFILE, READ);
num_bytes= _lread(in, buffer, max_buf_sz);
_Iclose(in);
/ldraw the text
DrawText(OutPaintDC, buffer,num_bytes,&rect,
DT _LEFTIDT WORDBREAK|DT NOCLIP|DT_NOPREFIX),
I/ffree the allocated memory
free(buffer);
-d. -~
//select the original font back into the device context and delete the font created for this function
SelectFont(OutPaintDC, hOldFont);

DeleteFont(hFont),

C.4.7 The paint_graphs function.
The paint_graphs function is used to draw the input and output blade grids
wireframe diagrams, the B-spline control net wireframe, and hub and duct images to the

361

passed device context, PaintDC. This allows the function to draw on the screen as well as
¢ the printer. The function receives the handle to the monitor or printer device context, a
point structure that defines the location on the display where the plot origin will be, a
pointer to the FILE structure that contains information about the PBD output file that will
U be plotted, and an index that determines the color that is used to plot the data. »
The D7POIN'1‘ structure is defined as a cartesian point in 7 space. It is defined
external to the paint_graphs functions since it will be used in other functions used to read
¢ PBD output files and draw PBD output plots on the Plot Viewer window. It consists of ’

seven floating point values organized in a structure.

sttuct D7POINT{ /*7-Dpt%
float xyzruv,w;
} D7POINT;

) o void paint_graphs(HDC PaintDC, POINT origin, FILE *plot, int color) »
{

‘declarevamblesthatmdeﬁnedmﬂwpllcﬁlcandthat .
‘mllbeuedmthxsﬁmmon

extern int plot_page;

extern float scele_factor,

/* *¥8 S84 %38
e . Vanable declarations * ’
" /
char buffer{120]; //character string for text output
int i=0, j, /Moop counters »
¢ nextchar=1, /lused for reading input file
1/ character by character
points_per_line, //dimensions of array of xyz
lines, // points describing the wireframes
o length; /Nength of text output strings »
struct D7POINT *points; //pointer to 7d point array used
// for reading and storing
362
P

it b a

{/ description of the wircframes
flost width, height, I//display size scaled to 640/480
XY, /13d point converted to screen
{1 coordinates
scale=15.0, {/scale factor to fit plot on screen
axis = 2.0; : {/scale factor for the axis plot
HPEN hPen|2], WOidPen;, Ifpens for drawing wircframes
POINT origin_axis; //origin for the axis plot
HFONT hFont, hOidFont; /Honts for writing text output

After variable declarations are made, the function creates a blue and a green pen
for drawing output and gets a handle to the device default font. The size of the display
area is calculated. A scale 1o be used to plot the data is calculated based on user input
provided with the PBD Plot Geometry dialog box.

{icreate a blue and a green pen for drawing the control point grid and the velocity vectors
hPen[0] = CreatePen(PS_SOLID, 1, RGB(0,0,255));

hPen[1) = CreatePen(PS_SOLID, 1, RGB(0,128,64));

Ifget a handle to the device default font

hFont = GetStockFon(DEVICE_DEFAULT_FONT),
//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats

width = (float)GetDeviceCaps (PaintDC, HORZRES),

height = (float)GetDeviceCaps (PaintDC, VERTRES);

/fsince the normal display aspect ratio is 4 10 3, ensure that the graphical
// output made by the program is in that aspect ratio

if{(width/beight)>(4.0/3.0))
width = height®(4 03.0y,
clse
beight = width#(3.0/4.0);

{/select the device default font and the pen indicated by the color index
// passed in the function call into the device context and save handles to
// the original font and pen

hOWIFont = SelectFont(PaintDC, hFont),

363

Fovs e oy,

i
“\
'
b
A
;
&

2 A o R T o

hOldPen = SeloctPen(PaintDC, hPen|color]);
//adjust the scale factor by an amount determined by the user
scale = scale_factor ® scale;

The function now reads in the data to be plotted. The output files written by the
PBD FORTRAN executable are in a standard format for use by a graphics program. The
first two lines are not used by this function and are therefore discarded. A while statement
is used to read the data character by character using the getc function until a carriage
return or linefeed statement is encountered.
//read in the data to be plotted
//scrap the first line

while (nextchar!=13&&nextchar!=10)

nextchar = getc(plot);

nextchar = 1;

//scrap the second line

while (nextchari=13&&nextchar!=10)
nextchar = getc(plot);

The function then employs a while statement to check for the end of the data file.
If the end of the data file is not found, the function reads the next zone of the data file.
This is done in order to allow the function to handle data files with multiple zones, such as
an output blade grid file which will have a separate zone for each blade and an additional
zone for the transition wake.
{/the purpose of this while statement is to allow the function to read and plot a series of wireframes from
// the same file, as in the case of a pbdout.obg file which contains zones for all of the blades as well as
// the transition wake

while((nextchar=getc(plot))!=EOF){

The next five lines of executable code search the next line in the data file for the

second "=" sign. The function then reads the first dimension of the data array into the
points_per_line variable.

Jlextract the mumber of points_per_line and the number of lines ‘
e Ifread the third line, looking for the first equal sign ’
while (aextchar!=61) S
nextchar = getc(plot);
nexichar =1;
¢ I/continue reading the third line, looking for the secoad equal sign

while (nexichari=61)
nextchar = getc(plot);

//read the points per line
fscanf{plot, "%d" & points_per_line);
nextchar=1;

-’;»' A IS

¢ The third "=" sign encountered keys the function to read the second dimension of the data »
array into the lines variable. The rest of the line is then discarded.

//continue reading the third line, looking for the third equal sign

while (nextchar!=61)
nextchar = getc(plot);

fscanf{plot,"%d" &lines);
¢ Nscrap the rest of line N
while (nextchari=13&&nextchar!=10)
nextchar = getc(plot);
¢ Memory is then allocated for storage of the file data in the points array using the »
malloc and sizeof functions. The data is read into the points array using two for loops.
The points array, although it contains a two dimensional array, is accessed as a one
¢ dimensional array. Note thatl the index of the array is indicated as "i*points_per_line+". »
This index refers to the jth column in the ith row, where the column and row indices run
from zero to "lines-1" and zero to "points_per_line-1" respectively.
e /lallocate memory for storing the points that describe the wireframe »
points = (struct D7POINT *) malloc((lines*points_per_line)*sizeof (struct DTPOINT));

365

/fread and store the point data

for (i=0; i<lines; i++) {

for (+=0; j<points_per_line; j++) {

facanf{plot, "5 %I % %I %L %I %, &points{i*points_per_line+].x,
&points{i*points_per_linc+j].y, &points{i*points_per_line+j].2, »
&points{i®points_per_line+j).r, &points{i*points_per_line+j].u,
&points{i*points_per_line+;].v, &point{i*points_per_linc+j.w);

}

The rest of the line is then discarded character by character until a carriage return
or linefeed is encountered in order to prepare the file so that the next zone may be read.
) {/scrap the rest of line |
while (nextchar!=13&&nextchar!=10)
mmm ; gﬂc(l)lot);
The text alignment for the device context is set to center adjusted and the plot
label is drawn at the top of the page using the TextOut function. The label drawn is a
function of the plot_page variable value since the paint_graphs function is used for
drawing the input blade grid and B-spline net as well as the output blade grid and S
transition wake.
The strlen function is used to provide the length of the text to be drawn. The
strlen function receives a string or the address of a string and returns the length of the

string minus the null terminating character.

' /Nabel the plot
SetTextAlign(PaintDC, TA_CENTER),
//determine the label by testing the plot_page flag
switch(plot_page)

{
case 4:{ TextOut(PaintDC,(int)(320*width/640.0),

366

;
i
- “’:M"WJ

e ofe

(int)(10*height/480.0), “INPUT BLADE GRID AND B-SPLINE NETW",
striea("INPUT BLADE GRID AND B-SPLINE NETV")),

haTy T X

break;)}
case 5:{ TextOut(PaindDC, (int)(320*width/640.0),
_(int)(10*height/480.0), "OUTPUT BLADE GRID AND CENTERBODYVW",
strien("OUTPUT BLADE GRID AND CENTERBODY\W"));

:luk:)

.1».,4:,:‘:-'. RS J.

The text alignment is restored to left adjusted and an origin is defined for use in
drawing the xyz axis on the plot.

SetTextAlign(PaintDC,TA_LEFT); »
//define the axis origin

origin_axis.x = (int)(40*width/640.0);

origin_axis.y = (int)(410*height/640.0);

The wireframe diagram is then drawn using two sets of two for loops. The first set
of two for loops is used to loop through the data array and draw lines connecting each
point in succeeding rows. The second set of two loops connects each point in succeeding . ®
columns.

The rotation_projection function receives floating point x, y, and z cartesian
coordinates and pointers to the x and y coordinate variables, X and Y. The function >’
rotates the point about the appropriate axis using the globally defined and user input pitch, "
roll, and yaw angles, and projects the point onto the z = 0 plane in order to prepare the
three dimensional data for two dimensional plotting. The x and y values are assigned to »
the X and Y variables. This is done to allow the user to view the output data in any
orientation. The rotation_projection function will be described in more detail below.

The MoveTo function is used to change the pen location to a point corresponding .
to the first point in the next row or column without drawing a line. The LineTo calls are
used to connect the subsequent points in the row or column. The x and y screen
coordinate points are scaled by the user determined scale factor internal to the MoveTo »
and LineTo calls 5o the output may be viewed in any scale.)

367

I/ draw wireframe diagram
for (i=0; ilimes; i++) {

rotation_projection(points{i®points_per_line].x, points(i®points_per_line].y,
points{i®points_per_line).2, X, &Y);

MoveTo(PaintDC, (int)((origin. x+scale*(X))* width/640.0),
(int)((origin.y-scale*(Y))*height/480.0));
for (j=1; j<points_per_line; j++){

rotation_projection(points{i*points_per_line+j].x, points|i*points_per_line+jl.y,
points{i®points_per_line+j).z, &X, &Y),

LineTo(PaintDC, (int)((origin. x+scale*(X)) *width/640.0),
(int)((origin.y-scale*(Y))*height/480.0));

}
}

for (7=0; j<points_per_line; j++) {

rotation_projection(points{j].x, points[jl.y,
pointsfj].z, &X, &Y);

MoveTo(PaintDC, (int)((origin.x+scale*(X)) *width/640.0),
(int)((origin.y-scale*(Y))*height/480.0));

for (i=1; i<lines; i++) {
rotation_projection(points{i*points_per_line+j).x,
points{i*points_per_line+j).y,
points{i*points_per_linctj].z, &X, &Y);

LineTo(PaintDC, (int)((origin.x+scale* (X)) *width/640.0),
(int)((origin.y-scale*(Y))*height/480.0));

}

The memory allocated to store the plot data is then freed using the free function.
The original pen is selected back into the device context and the xyz axes are drawn,
rotated through the same pitch, roll, and yaw angles as the wireframe diagram.
//free the allocated memory

?ee(poim %

—

/select the original pen into the device context and label the (x.,z) axes
SclectPen(PaintDC, hOldPen);
//draw the xyz axes
rotation_projection(axis + 1.0, 0.0, 0.0, &X, &Y);
length = sprintf(buffer, “x"),
TexdtOut(PaintDC, (int)((origin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/480.0),
buffer, length);
rotation_projection(0.0, axis + 1.0, 0.0, &X, &Y);
length = sprintf{buffer, "y");
TextOut(PaintDC, (int)((origin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/480.0),
buffer, length);
rotation_projection(0.0, 0.0, axis + 1.0, &X, &Y);
length = sprintfbuffer, “z"),
TextOut(PaintDC, (int)((origin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/480.0),
buffer, length);
rotation_projection(axis, 0.0, 0.0, &X, &Y);

MoveTo(PaintDC, (int)((origin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/430.0));

LineTo(PaintDC,(int)((origin_axis.x)*width/640.0),
(int)((origin_axis.y)*height/480.0));

rotation_projection(0.0, axis, 0.0, &X, &Y);

LineTo(PaintDC,(int)((origin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/480.0));

rotation_projection(0.0, 0.0, axis, &X, &Y);

MoveTo(PaintDC,(int)(origin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/480.0));

LineTo(PaintDC,(int)((origin_axis.x)*width/640.0),
(int)((origin_axis.y)*height/480.0));

369

s a7

® ofde @

ey

PR DR

The original font is selected back into the device context and the pens and font
¢ created for this function are deleted.

//select the original font back into the device context
SelectFoat(PaintDC,hOldFont); ®
//delete the pens and font created for this function

W‘:g;
DeleteObject(hPen{1]);

¢ DeleteFont(hFont); »

The rotation_projection function receives an xyz point and pointers to two floating
¢ point X and Y values. The function rotates the xyz point through the user defined pitch, ’
roll, and yaw angles, and projects it onto the Z = 0 plane in order to prepare it for plotting
on the monitor or printer. The result is placed in X and Y variables.

¢ void rotation_projection(float x, float y, float z, float * X, float * Y) > ©
{
extern float cos_roll;
extern float sin_roll;
extern float cos_yaw,
extern float sin_yaw; b’
e extern float cos_pitch; ;
extern float sin_pitch;

float dz = 10.0;

float xa,ya,za;
Xa = cos_yaw * x - sin_yaw * z;
za = sin_yaw * x + cos_yaw * z;
*X = cos_roll * xa + sin_roll *y;

¢ ya= cos_roll *y - sin_roll * xa;

*Y = sin_pitch * za + cos_pitch * ya;
*X = (dz * (*X));

Y = . .
o }Y (dz* (*Y)) >

370

C.4.83 The paint_hub function.

The paint_hub function receives the handle to a device context, a point on the
screen to use as the plot origin, and a pointer to a FILE structure. It draws the centerbody
described in the data file to the screen or the printer depending on the device context
passed.

void paint_hub(HDC PaintDC, POINT origin, FILE *plot)
{

* PYY I 1]

f
* declare variables that are defined in the pll.c fileand that *
* will be used in this function *

% t.‘t.““.t“‘t““‘#‘#t#‘t‘.“.‘t‘/

extern float scale_factor;

extern struct DP7POINT { /*7-Dpt*/

float x,y,z,r,u,v,w;
} D7POINT;
faddddd L 8 SRERRX PR EREREREL SRR RN E R RS SRS RS R 2R GRS
* Variable declarations *
- %% * _ et 22 L2 * e E tttttt‘tt‘ttt#/
int i,], /Noop counters
nextchar=1, /lused for reading input file
/{ character by character
points_per_line, //dimensions of array of xyz
lines; /1 points describing the hub
struct D7POINT *points; //pointer to 7d point array used for
//rvading and storing description of
/Mub
float width, height, //display size scaled to 640/480
XY, /13d point converted to screen
/I coordinates
scale=15.0; //scale factor to fit plot on screen
/ 2 -8 * ek Lt 3 Y] L 1] * (2221311
* declare structure variables *
L2 14 * * ks * ‘*“t““ttt‘tt“ttt“t‘t#t‘.‘t‘#‘/
371
® o o L @]

HPEN hRedPen, hOldPen; {/pens for drawing hub

The function creates a red pen for drawing the output. The size of the display area
is calculated and a scale to be used to plot the data is calculated based on user input
provided with the PBD Plot Geometry dialog box.

SESEEY

Ll L2 2

‘ determine the size of the device context to be written to, tlns‘
* allows the function to be device independent

{/create a red pen and store a handle to it
hRedPen = CreatePen(PS_SOLID, 1, RGB(255,0,0));

//determine the width of the display in pixels and the height of the display in raster lines and cast
// them as floats

width = (float)GetDeviceCaps (PaintDC, HORZRES);
height = (float)Ge(DeviceCaps (PaintDC, VERTRES);

//since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that aspect ratio

if((width/height)>(4.0/3.0))
width = height*(4.0/3.0);
else
height = width*(3.0/4.0);
//select the red pen and save a handle to the original pen
hOldPen = SelectPen(PaintDC,hRedPen);
//adjust the scale factor by an amount determined by the user

scale = scale_factor * scale;

The number of lines of data and number of points per line is extracted as described
in section C.4.7 above.
{/read in the data to be plotted
/iscrap the first line
while (nextchar!=13&&nextchar!=10)
nextchar = getc(plot);
nextchar =1;

//scrap the second line

32

while (nextchar!=13&&nextcharl=10)
nextchar = getc(plot);
nextchar =1;
Illextract the number of points_per_line and the number of lines
{/read the third line, looking for the first equal sign
while (nextcharl=61)
nextchar = getc(plot);
nextchar =1;
//continue reading the third line, looking for the first second equal sign

while (nextchar!=61)
nextchar = getc(plot);

//read the points per linc
fscanf(plot,"%d",&points_per_line),
nextchar=1; |
//continue reading the third line, looking for the first second equal sign

while (nextchar!=61)
nextchar = getc(plot);

fscanfiplot,"%d" &lines);
I/scrap the rest of line
while (nextchar!=13&&nextchar!=10)
nextchar = getc(plot);
Memory is allocated, the data file is read, and the wireframe diagram is drawn in
the same way as described in section C.4.7 above. N
//allocate memory for storing the points that describe the hub
points = (struct DTPOINT *) malloc((lines*points_per_line)*sizeof (struct D7POINT));
//read and store the point data
for (i=0; i<lines; i++) {
for (=0; j<points_per_line; j++) {
fscanf{plot, "%l %f %l %f %f %f %f”, &points{i*points_per_line+j].x,
&points[i*points_per_line+j).y, &points{i*points_per_line+j}.z,
&points{i*points_per_line+jl.r, &points[i*points_per_linetj].u,

373

Y

ERZE T

h‘--_-—- v

&points{i*points_per_line+j).v, &points|i*points _per_line+j].w);

} } »

e o@e

//draw the wireframe diagram
for (i=0; i<lines; i++) {

rotation_projection(points{i*points_per_line}.x, points|i*points _per_line).y,
points{i*points_per_linc].z, &X, &Y);

MoveTo(PaintDC, (int)((origin.x+scale* (X)) *width/640.0),
(int)((origin.y-scale*(Y))*height/480.0));
for (7=1; j<points_per_line; j++){

rotation_projection(points{i*points_per_line+j].x, points[i*points_per_line+j].y,
points{i*points_per_line+j).z, &X, &Y);

LineTo(PaintDC,(int)((origin. x+scale*(X))*widtlv640.0), »
(int)((origin.y-scale*(Y))*height/480.0));

}
}

o ‘ for (7=0; j<points_per_line; j++) {
rotation_projection(points(j).x, points(j].y, points[j].z, &X, &Y);

MoveTo(PaintDC,(int)(origin.x+scale*(X))*width/640.0),
(int)((origin.y-scale*(Y))*height/480.0));

for (i=1; i<lines; i++) {

fotation_projection(points{i*points_per_line+j].x, points|i*points_per_line+j}.y,
points{i*points_per_line+j}.z, &X, &Y);

¢ LincTo(PaintDC,(im)((oﬁgin.x+seale"(X))‘width/640.0), ’
(int)((origin.y-scale*(Y))*height/480.0));

}
}
' The memory used to store the plot data is freed using the free function, the original ’

pen is selected back into the device context, and the pen created for this function is
deleted.

' Mree the allocated memory »
free(points);

374

v oge

//select the original pen back into the device context
SelectPen(PaintDC, hOidPen);

{/delete the pen created for this function
DeleteObject(hRedPen);

C.4.9 The paint_gsp function.

The paint_gsp function draws the circulation contour plots described in the
PBDOUT.GSP or PBDOUT.SOL files to the monitor or printer. The function receives a
handle to the device context, the origin at which the plot is to be printed, and a pointer a
FILE structure that contains information regarding the data file to be plotted.

void paint_gsp(HDC PaintDC, POINT origin, FILE *plot)

{ * * 23] SEELEEEEBES *EERN
'declarevanablesthataredeﬁnedmthepllcﬁleandthat *
* will be used in this fnnctmn
*h e E S --“$/
extern struct D7POINT{ /*7-Dpt*/
float X,Y,Z,I,u,V,W,
} D7POINT;
extern float scale_factor;
[orastssssetassasese ceereases chsenn
* Variable declarations .
* b * * i daiddt b idd)
char buffer{120], //character string for text output
titie{81]= "BOUND CIRCULATION STRENGTH\"; I/plot title
int i=0, j, /Noop counters
nextchar=], /lused for reading input file
// character by character
points_per_line, //dimensions of array of xyz
lines, 1/ points describing the wireframes
length, /Nength of text output strings
id, /lindex indicating color to paint
// the contour plot polygon
375
9 [J o @ e o

&/ v'v

{

dummy; //dummy integer for reading
// data not used by this function
struct D7POINT *points; //pointer to 7d point array used
// for reading and storing
// the plot data

float width, height, //display size scaled to 640/480

scale=150.0, I/scale factor to fit plot on

// screen
max_discrete = -100.0, //max and min values for the
min_discrete = 100.0, // bound vortex strength
w_m‘y - 'lw-o’
min_density = 100.0;

HPEN hPeni6], //pens for drawing the plots
hOidPen;

HBRUSH hBrush{6], //brushes for drawing the plots
hOidBrush;

HFONT hFoat, //fonts for writing text output
hOldFont;

POINT origin_axis, /lorigin for the axis plot
origin_dis, /lorigin for the discrete plot
origin_den, //origin for the density plot
poly[5]; /larray of points that define

// the polygons to be plotted

Origins for the discrete and density plots are calculated based on the origin passed
with the function call. Six pens and brushes are created for drawing the contour plots.
The device default font is created and the size of the display is calculated.

//define the origins of the discrete and the density plots based on the origin passed with the function call

origin_dis.x = origin.x-240;
origin_dis.y = origin.y;
igin_den.x = origin.x+80;
origin_den.y = origin.y;
//create brushes and peas used for drawing the contour plots

hBrush{0] = CreateSolidBrush (RGB(255,0,0)):
hBrush{1] = CreateSolidBrush (RGB(255,255,0));
hBrush{2} = CreateSolidBrush (RGB(0,255,0));
hBrush{3] = CreateSolidBrush (RGB(0,225,255));

376

r_——-——_t

hBrush[4] = CreateSolidBrush (RGB(0,0,259));
hBrush([S] = CreateSolidBrush (RGB(255,0,255));

¢ hPea[0] = CreatePen (PS_SOLID, 1, RGB(255.0,0));
hPea[1] = CreatePen (PS_SOLID, 1, RGB(255,255,0));
hPen[2] = CreatePen (PS_SOLID, 1, RGB(0,255,0));
hPea[3] = CreaiePen (PS_SOLID, 1, RGB(0,225,.255));
hPen[4] = CreatcPen (PS_SOLID, 1, RGB(0,0,255));
hPen{S] = CreatePen (PS_SOLID, 1, RGB(255,0,255));

h 74 v' -

//get a handle to the device default font
hFont = GetStockFont(DEVICE_DEFAULT_FONT);

" //determine the width of the display in pixels and the height of the display in raster lines and cast them
: // as floats

width = (float)GetDeviceCaps (PaintDC, HORZRES),
height = (float)GetDeviceCaps (PaintDC, VERTRES);

{Isince the normal display aspect ratio is 4 to 3, ensure that the graphical

e /1 output made by the program is in that aspect ratio
if{(width/height)>(4.0/3.0))
width = height*(4.0/3.0);
else
height = width*(3.0/4.0);
» o ght = width®()

//select the device default font and a new pen and brush and save handles to the original font, brush,
// and pen

hOldFont = SelectFont(PaintDC, hFont);
] hOldPen = SelectPen(PaintDC,hPen[0]);

hOldBrush = SelectObject(PaintDC,hBrush{0]);

The plots are labeled and the data is read in the way described in section C.4.7.

)
//print the title and the plot labels
SetTextAlign(PaintDC,TA_CENTER);
o TextOut(PaintDC,(int)(320*width/640.0), (int)(10*height/480.0), title, strlen(title));
SetTextAlign(PaintDC,TA_LEFT),
TextOut(PaintDC,(int)((origin_dis.x+50)*width/640.0),
(int)((origin_dis.y-180)*height/480.0), "Discrete\0", strlen(*Discrete\0"));
e TextOut(PaintDC, (int)((origin_den.x+50)*width/640.0),
(int)((origin_den.y-180)*height/480.0), "Vortex Sheef\0", strlen(*Vortex Sheet\0™));
n
[)
$ @ ® e L ®) @ o
SRt iiabinbe st metnistenieissn e it s

)

' Iiread in the data 1o be plotted

) e I1scrap the first line ' >
while (nextchar!=13&&nextchar!=10)

nextchar = gesc(plot);
nextchar =];

&

P liscrap the second line »
while (nextcharl=13&&nextchar!=10)
nexichar = getc(plot);
nexichar =1;
//extract the number of points_per_line and the number of lines »
//read the third line, looking for the first equal sign
while (nextchar!=61)
nextchar = getc(plot);
pextchar =1; »
//continue reading the third line, looking for the first second equal sign

while (nextchari=61)
nextchar = getc(plot);

//read the points per line
fscanf(plot,"%d",&points_per_linc);
nextchar=1,;
//continue reading the third line, looking for the first second equal sign

while (nextchari=61)
nextchar = getc(plot);

° = fscanf{plot,"%d",&lines); »
//scrap the rest of line

while (nextchari=13&&nextchar|=10)
nextchar = getc(plot);

Jfallocate memory for storing the points that describe the contour plots

points = (struct D7POINT *) malloc((lines*points_per_line)*sizeof (struct DTPOINT));
//tead the point dan

for (i=0; i<lines; i++) {

for (7=0; j<points_per_line; j++) {

378

The first data value on each data line of the file is discarded by reading it into the
dummy variable. Note that only five values are provided on each line instead of the seven
provided in the data files described previously. The maximum and minimum values of
circulation for the discrete and density plots are calculated during the data reading
process.

//read the index into dummy, read the radius into x, the chord into y, Gdiscrete*1000 into z, and
/! Gdensity®1000 into r
fscanf(plot,*%d %f %S %£ %f *, &dummy, &points[i*points_per_line+].x,
&points{i*points_per_linc+j].y, &points{i*points_per_linc+j].,
&points{i*points_per_line+jl.1);
/ffind the max and min values of the discrete and density values

max_discrete = max(points{i*points_per_linctj].z,max_discrete);

min_discrete = min(pointsfi*points_per_line+j).z min_discrete);

max_density = max(points{i*points_per_line+j].r,max_density);

min_density = min(points[i*points_per_line+j}.r,min_density);

}

The first step in drawing the contour plots is to loop through the data points. A
weighted average circulation strength is calculated for each point using the adjacent
points. The weighted average is cast as an integer index on-he same scale as the pens and
brushes (0-6) and used to select the appropriate pen and brush. The vertices of a polygon
are calculated using the coordinates of the adjacent points, and the Polygon function is
used to draw the polygon. The Polygon function receives a handle to the device context,
the address of an array with the vertices, and the number of points in the array. It causes a

polygon to be draw with the pen and brush currently selected into the device context.

/Noop through the points
for (i=0; i<lines-1; i++) {

379

SR v]

AL I

v PR T L

for (j=1; j<points_per_line-1; j++) {

//calculate the color to paint the polygon oa the discrete plot by calculating
// an average of the values of bound circulation at the vertices

id = (int)(5.0*(((points{i*points_per_line+j}.z+
pointsf(i+1)*points_per_line+j).z+points|(i+1)*points_per_line+j+1].z+

points{i*points_per_line+j+1).z)/4.0)-min_discreic)/(max_discrete-min_discrete));
/] select the appropriate brush and pen

SelectPen(PaintDC,hPealid));
SelectObject(PaintDC, hBrush(id]);

//assign Xy values in screen coordisiates to the vertices of the polygon

poly[0].x = (int)((origin_dis.x+scale*points[i*points_per_linc+j]. x)*width/640.0);
poly[0].y = (int)(origin_dis.y-scale*points{i*points_per_linc+j].y)*height/480.0);
poly[1]).x = (int)((origin_dis.x+scale*points[i*points_per_line+j+1].x)*width/640.0),
poly[1).y = (int){(origin_dis.y-scale*points|i*points_per_line+j+1).y)*height/480.0);
poly{2].x = (int)((origin_dis.x+scale*points[(i+1)*points_per_line+j+1].x)*width/640.0);
poly[2).y = (int)((origin_dis.y-scale*points{(i+1)*points_per_line+j+1).y)*height/480.0);
poly[3].x = (int)((origin_dis.x+scale*points[(i+1)*points_per_line+j].x)*width/640.0),
poly[3].y = (int)X(origin_dis.y-scale*points|(i+1)*points_per_line+j].y)*height/480.0);

poly[4].x = (int)((origin_dis.x+scale*points{i*points_per_line+j].x)*width/640.0),
poly[4]).y = (int)((origin_dis.y-scale*points[i®*points_per_line+f.y)*height/480.0);

//draw the polygon

Polygon(PaintDC,poly,5);

The process is repeated for the density plot.

//calculate the color to paint the polygon on the density plot by calculating
// an average of the values of bound circulation at the vertices

id = (int)(5.0*(((points[i*points_per_line+j].r+points{(i+1)*points_per_line+j].r+
points{(i+1)*points_per_line+j+1].r+points[i*points_per_line+j+1].r)/4 0)
-min_density)/(max_density-min_density));

/1 select the appropriate brush and pen

SelectPen(PaintDC, hPen[id]);
SelectObject(PaintDC,hBrush{id));

//assign xy values in screen coordinates to the vertices of the polygon

poly[0].x = (int)((origin_den.x+scale*points{i*points_per_line+j].x)*width/640.0);
poly[O].y = (intX(origin_den.y-scale*points[i*points_per_line+j].y)*height/480.0);

poly[1].x = (int)((origin_den.x+scale*points{i*points_per_line+j+1].x)*width/640.0);
poly[1].y = (int)((origin_den.y-scale*points{i*points_per_line+j+1].y)*height/480.0):
poly[2].x = (int)((origin_den.x+scale*points[(i+1)*points_per_line+j+1].x1*width/640.0);

380

[
‘l

poly{2].y = (int)((origin_den.y-scale*points{(i+1)*points_per_linc+j+1].y)*height/480.0);
poly[3].x = (int)((origin_den.x+scale*points|(i+1)*points_per_linc+j].x)*width/640.0); ,
poly{3].y = (int)((origin_den.y-scale*points{(i+1)*points_per_linc+j].y)*beight/480.0); »
poly[4).x = (int)((origin_den. x+scale*points{i*points_per_line+j}.x)*width/640.0);

polyl4].y = (int)(origin_den.y-scale*pointsi*points_per_line+j).y)*height/480.0);

//draw the polygon
Polygon(PaintDC,poly, S); »

A legend is drawn by using the Rectanglc function to draw a series of rectangles
with all of the colors used in the plots. The maximum and minimum circulation values for
the two plots are drawn to indicate the scale.

//draw the plot legend

for (i=0;i<6;i++) {

//select each pen and brush in tum

SelectObject(PaintDC, hBrushi]),
SelectPen(PaintDC,hPenli}),
//draw a small rectangle for each color under each plot
Rectangle (PaintDC,(int)((origin_dis.x+70+i*10)*width/640.0),)
(int)((origin_dis.y+50)*height/480.0), ,

(int)((origin_dis.x+70+(i+1)*10)*width/640.0),
(intX(origin_dis.y+60)*height/480.0));

Rectangle (PaintDC,(int)((origin_den.x+70+i*10)*width/640.0),
(int){(origin_den y+50)*height/480.0), Y
(int)((origin_den.x+70+(i+1)*10)*width/640.0),
(int)((origin_den.y+60)*heigh1/480.0));
}
/Nabel the legend with the max and min values)
length = sprintf(buffer, “%2.1f %2.1f", min_discrete, max_discrete);

TextOut(PaintDC, (int)((origin_dis.x+60)*width/640.0),
(int)((origin_dis.y+70)*height/480.0), buffer, length);

length = sprintfibuffer, "%2.1f %2.1f", min_density, max_density); ’
TextOut(PaintDC, (int)((origin_den.x+60)*width/640.0),
381
)
S e K] ® o [° ® o

|

(int)((origin_den.y+70)*height/480.0), buffer, length);
//select the original pea back into the device context

SelectPen (PaintDC,hOldPen);

An axis is drawn to indicate the radial and chordwise directions on the plots.
¢ /idefine the axis origin o

origin_axis.x = (int)(30*width/640.0);
origin_axis.y = (int)(480*height/640.0);

/Nabel the axes
length = sprintf{buffer, "Radius™);
TextOut(PaintDC, (int){(origin_axis.x+45)*width/640.0),
(int)((origin_axis.y)*height/430.0), buffer, length);
length = sprintf{buffer, "Chord");

TextOut(PaintDC, (int)((origin_axis.x)*width/640.0),
(int)((origin_axis.y-45)*height/480.0), buffer, length);

¢ //draw the axes » <

MoveTo(PaintDC, (int)((origin_axis.x+30)*width/640.0),
(int)((origin_axis.y)*height/480.0));

LineTo(PaintDC, (int)(origin_axis.x)*width/640.0), >
e (int)((origin_axis.y)*height/480.0)); :

LineTo(PaintDC, (int)((origin_axis.x)*width/640.0),
(int)((origin_axis.y-30)*height/480.0));

{/select the original font and brush back into the device context

®
e
SelectFont(PaintDC,hOidFont);
SelectObject(PaintDC,hOldBrush);
e The font, brushes, and pens created for this function are deleted. ’

/ldelete the font, brushes, and pens created for this function
DeleteFont(hFont);
e for(i=0;i<6:i++){ ’
DeleteObject(hPenli]);

382

e @8 8 8

]

DeletoObject(hBrush(i]);

C.4.10 The paint_vcp function.

The paint_vcp function draws the fluid velocities at the blade control points. The
function receives a handle to the device context, a point indicating the origin at which the
plot is to be drawn, and a pointer to the FILE structure that describes the file used to
provide the plot data. '
void paint_vcp(HDC PaintDC, POINT origin, FILE *plot)

{
‘dedatevanablesthatmdeﬁnedmtbepllcﬁleandlhat *
* will be used in this function
F) E 3 * F'YT 1 3 /
extern float scale_factor,;
extern struct D7POINT{ /*7-Dpt*/
float xYy,zruv,w,
} D7POINT;
’ - * - % v e
* Variable declarations *
. » L ‘_A 1133131333731 /
struct D7POINT *points; //pointer to 7d point array used
/! for reading and storing
/1 description of hub
float width, height, //display size scaled to 640/480
XY, {13d point converted to screen
/I coordinates
scale=15.0, //scale factor to fit plot on screen
velocity_scale=0.05, //scale factor for velocity vectors
axis = 2.0; //scale factor for the axis plot
int ij /floop counters
nextchar=1, /fused for reading input file
// character by character
points_per_line, //dimensions of array of xyz
lines, {/ points describing the hub

383

T

e 'u!:l.‘«sv«.‘: s r-vuu-',-;rx:‘ F oy g_.kalgn;.,

.i
‘I

length; /Nength of text output strings
char buffer{120}; /icharacter string for text output
HPEN hPen{2], hOWdPen; /lpens for drawing the plots
POINT origin_axis; Horigin for drawing the axis plot
HPONT hFout, hOldFont; /ffonts for drawing the text output

After variable declarations are made, the function creates a blue and a green pen
for drawing output and gets a handle to the device default font. The size of the display
area is calculated. A scale to be used to plot the data is calculated based on user input
provided with the PBD Plot Geometry dialog box.

//create a blue and a greex: pen for drawing the control point grid and the velocity vectors

hPen{0] = CreatePen(PS_SOLID, 1, RGB(0,0,255));
hPen[1) = CreatePea(PS_SOLID, 1, RGB(0,128,64));

//get a handle to the device default font
hFont = GetStockFont(DEVICE_DEFAULT_FONT),

//determine the width of the display in pixels and the height of the display in raster lines and cast
// them as floats

width = (float)GetDeviceCaps (PaintDC, HORZRES);
height = (float)GetDeviceCaps (PaintDC, VERTRES);

//since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that aspect ratio

if{(width/height)>(4.0/3.0))
width = height*(4.0/3.0);
else
height = width*(3.0/4.0);
//select the device default font and the blue pen into the device context and save handles to the original
font
// and pen
hOldFont = SelectFont(PaintDC, hFont);
bOWdPen = SelectPen(PaintDC,hPen{0]);
//adjust the scale factor by an amount determined by the user

scale = scale_factor * scale;

384

The data is read in the same manner as described in section C.4.7 above.

/iread in the data to be plotted
//scrap the first line
while (nextchart=13&&nextchari=10)
nextchar = getc(plot);
nextchar = 1;
//scrap the second line
while (nextcharl=13&&nextchar!=10)
nextchar = getc(plot);
nexichar =1;
//extract the number of points_per_line and the number of lines
//read the third line, looking for the first equal sign
while (nextchar!=61)
nextchar = getc(plot);
nextchar =1;
//continue reading the third line, looking for the second equal sign

while (nextchari=61)
nextchar = getc(plot);

/Iread the points per line
fscanf(plot,"%d" ,&points_per_line);
nextchar=1;
//continue reading the third line, looking for the third equal sign ~-

while (nextcharl=61)
nextchar = getc(plot);

fecanf(plot,"%d",&lines);
//scrap the rest of line

while (nextchari=13&&nextcharl=10)
nextchar = getc(plot);

//aliocate memory for storing the points that describe the control points and

// the velocity vector associated with each control point

points = (struct D7POINT *) malloc((lines*points_per_line)*sizeof (struct D7POINT));

385

FOR—.

?
i
]
i
3

//read and store the point data

for (i=0; i<lines; i++) {
for (7=0; j<points_per_line; j++) {
fscanfRplot, "%F % %I %I %L %I %I, &points{i*points_per_line+j].x,
&points{i®points_per_line+j].y, &points{i®points_per_line+j).2,
&points[i®points_per_line+j).r, &points|i®points_per_line+j].u,
&points{i®points_per_line+j).v, &points{i*points_per_linetj].w);

}
}

The plot is labeled, the axis origin is calculated, and a wireframe diagram of the blade control
points is drawn in the same manner as is described in section C.4.7 above.

INabel the plot
SetTextAlign(PaintDC,TA_CENTER);
TextOut(PaintDC, (int)(320*width/640.0),
(int)(10*height/480.0), "VELOCITY AT CONTROL POINTS\",
strlen("VELOCITY AT CONTROL POINTS\0"));
SetTextAlign(PaintDC,TA_LEFT);
//define the axis origin

origin_axis.x = (int)40*width/640.0);
origin_axis.y = (int)(410*height/640.0);

1/ draw wireframe diagram
for (i=0; i<lines; i++) {

rotation_projection(points[i*points_per_line}.x, pointsfi*points_per_line].y,
points|i*points_per_line].z, &X, &Y);

MoveTo(PaintDC, (int)((origin.x+scale*(X))*width/640.0),
(int)((origin.y-scale*(Y))*height/480.0));
for (=1, j<points_per_line; j++){

rotation_projection(points[i*points_per_line+j].x, points[i*points_per_linc+jl.y,
pointsfi*points_per_linetj].z, &X, &Y);

LineTo(PaintDC, (int)((origin.x+scale*(X)) *width/640.0),
(int)((origin.y-scale*(Y))*height/480.0));

}

rotation_peojection(points{j].x, points(j].y,
pointsj).z, &X, &Y);

MoveTo(PaintDC, (int)((origin. x+scale*(X))*widih/640.0),
_ (int)((origin.y-ecalc*(Y)) *height/480.0));

for (i=1; i<lines; i++) {
rotation_projection(points[i*points_per_line+j).x,
points{i*points_per_line+jl.y,
points{i*points_per_line+j].z, &X, &Y);

LineTo(PaintDC, (int)((origin.x-+scale*(X))*width/640.0),
(int)((origin.y-scale*(Y)) *height/480.0));

}

} q
for (1=0; j<points_per_line; j++) { ' ‘
g

.,n.x'-'..!ﬁm“» b T WA

}
//select the green pen and draw the velocities

SelectPen(PaintDC, hPen[1)),

After the green pen is selected, the velocity vectors are drawn. The vectors are ‘ 4
drawn with the tails at the control points. They are drawn using the LineTo functionto a ’
point displaced from the control points by the velocity components scaled by a velocity :
scale factor. The rotation_projection function is used to convert the three dimensional ’7
points to two dimensionsal points for plotting on the monitor or printer.

for (i=0; i<lines; i++) {

for (7=0; j<points_per_line; j++){
poinsioponts per oty el
points[i*points_per_line+j}.z, &X, &Y);

MoveTo(PaintDC,(int)(origin. x+scale*(X))*width/640.0),
(int)((origin.y-scale*(Y))*height/480.0));

P R T

D

Oy ‘...?:T

rotation_projection(points}i*points_per_line+j].x+
wvelocity_scale*points{i*points_per_line+j].u,
points{i*points_per_line+j].y+velocity_scale*
points[i*points_per_line+j).v,
points[i*points_per_line+j].z+velocity_scale®
points{i®*points_per_line+jl.w, &X, &Y),

- T AR e TR

e

i
g e 30 ey

7

LineTo(PaintDC, (int)((origin. x-+scale*(X)) *width/640.0), '
(int)(origin.y-acale*(Y))*height/430.0)); >

) ’ ®
An xyz axis is drawn, rotated through the same pitch, roll and yaw angles as the » |
velocity plot.
/fselect the original pen into the device context, draw and label the (x.y,z) axes
SelectPen(PaintDC, hOldPen); »
rotation_projection(axis + 1.0, 0.0, 0.0, &X, &Y):
length = sprintRbuffer, "x");
TextOut(PaintDC, (int)((origin_axis.x+X)*width/640.0), »

(int)((origin_axis.y-Y)*height/480.0), buffer, length);
rotation_projection(0.0, axis + 1.0, 0.0, &X, &Y);
length = sprintfR(buffer, "y");

TextOut(PaintDC, (int)((origin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/480.0), buffer, lengt” -

rotation_projection(0.0, 0.0, axis + 1.0, &X, &Y); .
length = sprintfbuffer, *z°); b7

TextOut(PaintDC, (int)((origin_axis.x+X)*width/640.0), o
(int)((origin_axis.y-Y)*height/480.0), buffer, length); '

rotation_projection(axis, 0.0, 0.0, &X, &Y);,

MoveTo(PaintDC,(int)((origin_axis.x+X)*width/640.0), ’
(int)((origin_axis.y-Y)*height/480.0));
LineTo(PaiDC, (int)((origin_axis.x)*width/640.0),
(int)((origin_axis.y)*height/480.0));
®

rotation_projection(0.0, axis, 0.0, &X, &Y);

LineTo(PaintDC, (int)X(origin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/480.0));

rotation_projection(0.0, 0.0, axis, &X, &Y); Y

MoveTo(PaintDC,(int)((origin_axis.x+X)*width/640.0),
(int)((origin_sxis.y-Y)*height/480.0));

388

LineTo(PaintDC, (int)((origin_axis.x)*widih/640.0),
(int)((origin_axis.y)*height/480.0));

{/select the original fomt back into the device context
SelectFont(PaintDC,hOidFont),

The pens and font created for this function are deleted and the allocated
memory is freed using the free function. .
[idelete the peas and font created for this function

DeleseObject(hPeaf0]); »
DeleteObject(hPen(1]); '

DeleteFont(hFont),

858 PR S T T S PR RS
. ® ofe

/ffree the allocated memory

free(points),

C.4.11 The paint_cmv function. . ®
The paint_cmv function draws a plot of circumferential mean blade velocity plot to
the passed screen or the printer. The function receives a handle to the device context, an
origin for the plot, and a pointer to the FILE structure containing the data. The function . ’
works in the same way as the paint_vcp function except that 2 wireframe is not drawn. -
\{'Oid paint_cmv(HDC Pa.ntDC, POINT origin, FILE *plot) 7
A s»

‘declmvmablesthatmdeﬁnedmthepllcﬁleandthat *
* will be used in this function

- M i |
extern struct D7POINT{ /*7-Dpt*/

float xyzruv,w,
} D7POINT;

R R

389

* Varisble declarstions .
" o
stract D7POINT point; //pointer to 7d point array used »
/! for reading and storing @
// description of hub
flost width, height, //display size scaled to 640/480
XY, 13d point coaverted to screen »
11 coordinates
scale=15.0, //scale factor to fit plot on screen
wvelocity_scale~0.2, //scale factor for velocity vectors
axis = 2.0; I/scale factor for the axis plot
int i-o,. /Noop counters ’
nexichar=]1, /hused for reading input file
// character by character
pum_points, /hotal number of points to plot
length; /Nength of text output strings
char buffer{120], //character string for text cutput ’
title{J= /fplot title
*CIRCUMFERENTIAL MEAN BLADE VELOCITY\WO",
HPEN hPen, hOldPen; //pens for drawing the plots
POINT origin_axis, Horigin for drawing the axis plot > ©
plot_point[2]; //array of points for plotting the
/! velocity vectors
HFONT hFont, hOidFont; /ffonts for drawing the text output
//create a green pen for drawing the velocity vectors .:,.7
hPen = CreatePen(PS_SOLID, 1, RGB(0,128,64)); '
//get a handle to the device default font
hFoat = GetStockFont(DEVICE_DEFAULT_FONT); ’
//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats
wislh = (ﬂod)GetDev?ceCapc (PamtDC, HORZRES), »
height = (float)GetDeviceCaps (PaintDC, VERTRES),
//since the normal display aspect ratio is 4 to 3, ensure that the graphical
// output made by the program is in that aspect ratio
if{(width/beight)>(4.0/3.0)) »
width = height*(4.0/3.0);
else '
height = width*(3.0/4.0);

390

//sslect the device default foat and the greea pea into the device context and
// save handles 0 the original font and pen

hOldFont = SelectFont(PaiDC, hFont);
bOldPen = SelectPen(PaitDC, hPen);

//adjust the scale factor by an amount determined by the user
scale = scale_factor * scale;

//draw the title to the device context
SetTextAlign(PaintDC,TA_CENTER),

TextOut(PaintDC,(int)(320*width/640.0), (int)(10*height/480.0) title, strien(title)),

SetTextAlign(PaintDC,TA_LEFT);
//read in the data to be plotted
fIscrap the first line
while (nextchari=13&&nextchar!=10)
nextchar = getc(plot);
nextchar =];
{/scrap the second line
while (nextchar!=13&&nextchar!=10)
nextchar = getc(plot);
nextchar =1;
{/extract the total number of points
//read the third line, looking for the first equal sign
while (nextchar{=61) ~e
nextchar = getc(plot);
nextchar =1;
//continue reading the third line, looking for the second equal sign

while (nextchari=61) -
nextchar = getc(plot);

//read the number of points
facanf(plot,"%d", &num_points);
nextchar=];

/fscrap the rest of line

39

s AN SR

4 RPN T

while (aextchari=13&&nexichari=10)
nextchar = getc(plot);

/fread and plot the velocity vector data, one data point at a time
/Noop through all of the data points

for (i=0; i<oum_points; i++) {
/fread the data into a 7d point

facanf(plot,"36L %I I K %l %I *, &point.x, &point.y, &point.z, &point.u, &point.v, &point.w),

{/calculate the screen coordinates of the root of the velocity vector
rolation_projection(point.x, point.y, point.z, X, &Y);
//assign the X and Y screen coordinates to the first point of the plot_point array

plot_point{0].x = (int)((origin.x+scale*(X))*width/640.0);
plot_point[0].y = (int)((origin.y-scale*(Y))*height/480.0);

//calculate the screen coordinates of the tip of the velocity vector

rotation_projection{point.x+velocity _scale*point.u, point.y+velocity_scale*point.v,
point.z+velocity_scale*point.w, &X, &Y);

//assign the X and Y screen coordinates to the first point of the plot_point array

plot_point]1).x = (int)((origin.x-+scale*(X))*width/640.0);
plot_point{1].y = (int)((origin.y-scale*(Y))*height/480.0),

Ifplot the vector as a polyline
Polyline(PaintDC,plot_point,2);
}
//select the original pen into the device context, draw and label the (x.y,z) axes
SelectPen(PaintDC, hOidPen);
/ldefine the axis origin

origin_axis.x = (int)(40*width/640.0);
origin_axis.y = (int)(410*height/640.0);

rotation_projection(axis + 1.0, 0.0, 0.0, &X, &Y);
length = sprintf{buffer, “x");

TextOut(PaintDC, (int)((origin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/480.0), buffer, length);

392

» T
3

rotation_projection(0.0, axis + 1.0, 0.0, &X, &Y),
leagth = sprintRbufter, °y"),

TextOut(PaintDC, (int)((origin_axis.x+X)*width/640.0),
(imt)((origin_axis.y-Y)*height/480.0), buffer, leagth);

rotation_projection(0.0, 0.0, axis + 1.0, &X, &Y);
length = sprintf(buffer, "z"),

TextOut(PaintDC, (int)((origin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/480.0), buffer, length);

rotation_projection(axis, 0.0, 0.0, &X, &Y);

MoveTo(PaintDC, (int)((ovigin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/480.0));

LineTo(PaintDC, (int)((origin_axis.x)*width/640.0),
(int)((origin_axis.y)*height/480.0));

rotation_projection(0.0, axis, 0.0, &£X, &Y);

LineTo(PaintDC, (int)((origin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/480.0));

rotation_projection(0.0, 0.0, axis, &X, &Y);

MoveTo(PaintDC,(int)((origin_axis.x+X)*width/640.0),
(int)((origin_axis.y-Y)*height/480.0));

LineTo(PaintDC (int)((origin_axis.x)*width/640.0),
(int)((origin_axis.y)*height/480.0));

iselect the original font back into the device context
SelectFont(PaintDC, hOIdFont);

Ndelete the pen and font created for this function
DeleteObject(hPen);

, DeleteFont(hFont);

C.4.12 The paint_rdc fanction.

The paint_rdc function draws a plot of circulation vs. radial position using data from a
PBDOUT RDC or PBDOUT.SGR file. The function receives a handle to the device context and a pointer

to the FILE structure that contains information about the data file.

393

sk 2 TR e AR R

e R

SR R £OT N TP I

char buffer{120],
title[81);

del_x=30,
del_y=20;
delta_G,

max_G=-100.0,
min_G=100.0,
max_r=0.0;

float *r,
.G;

i
s/

I//character string for text output
{hitle of the plot

/Noop counter

/M of points to be plotted
/findicator of decimal places
// to print in y-axis labels
/fused for reading input file
// character by character
/Mmumber of pixels to shift

// y-axis labels

/Nlength of text output strings
//x and y spacing for graph in
// pixels

//display size scaled to 640/480
//difference between max and min
G

//max and min circulation

//max radius

//pointers to float arrays for
// radius and circulation

I® ¢

* declare structure variables

HPEN hPlotPen,
hThickPen,
hThinPen,
hOidPen;

HFONT hFont,
hSmallFont,
hOldFont;

LOGFONT IFont;

HBRUSH hBrush,
hOldBrush;

POINT origin={170,300};

it T

394

I/pens for drawing the graph

/ffonts for drawing the text
// output

/Nogical font structure for
// creating fonts

/forushes for drawing the graph

{/origin of the plot in screen
// coordinates

POINT * point; //pointer to an array of points

‘ muuummmmumm tlus‘
. mmmuumw

. see J

The function creates a blue pen for drawing circulation versus radial position, a
thin black pen for drawing horizontal and vertical grid lines, and a thick black pen for
drawing a frame around the plot. The function also creates a hollow brush, and small and
normal sized fonts. The display size is calculated.

//create a blue pen for plotting G vs. r and a thin and a thick black pen for drawing the graph axes
hPlotPen = CreatePen(PS_SOLID, 1, RGB(0,0,255));

hThickPen = CreatePen(PS_SOLID, 2, RGB(0,0,0));

kThinPen = CreatePen(PS_SOLID, 1, RGB(0,0,0));
f/create a hollow brush

hBrush = GetStockBrush(HOLLOW_BRUSH);

//get a handle to the device default font

hFont = GetStockFont(DEVICE_DEFAULT_FONT);,

//£ill a logical font structure using the device defauit font

GetObject(hFont,sizeoRLOGFONT),&IFont),

//adjust the font size and create a small font for labeling the axes
IFont.1fHeight = -10;
hSmailFont = CreateFontIndirect(&1Font);

//select the hollow brush, default font, and thick black pen into the device
// context and save handles to the original brush, font, and pen

hOidBrush = SelectObject(PaintDC, hBrush);
hOldFont = SelectFont(PaintDC, hFont),
hOldPen = SelectPen(PaintDC, hThickPen);

//determine the width of the display in pixels and the height of the display
// in raster lines and cast them as floats

width = (float)GetDeviceCaps (PaintDC, HORZRES);

395

A it ek e)

height = (float)GetDeviceCaps (PaintDC, VERTRES); ’
@®

//since the normal display aspect ratio is 4 to 3, ensure that the graphical >
{/ output made by the progrum is in that aspect ratio
if{(width/height)>(4.0/3.0))
width = height*(4.0/3.0);
clse
height = width*(3.0/4.0); »

The first line of the data file is read character by character in order to locate and read the plot
title.
//read in the data to be plotted
//read the first line and find the title
while (nextchar!=13&&nextchar!=10& &nextcharl=34)
nextchar = getc(plot);
nextchar = getc(plot);
while (nextchari=34) {
title[i]=nextchar;
i+ '
nextchar = getc(plot);
} » ©
title[i]="0",
//scrap the rest of the first line
while (nextchar!=13&&nextchar!=10) D’
nextchar = getc(plot);
nextchar =1;
The second line of the data file is discarded and the third line is read character by
character to find the number of data points in the file.
//scrap the second line
while (nextchar!=13&&nextchari=10)
nextchar = getc(plot); »
nextchar =1;
//extract the number of points
//read the third line, looking for the equal sign
while (nextchar!=61)

nextchar = getc(plot);
nextchar =];

3%

//continue reading the third line, looking for the second equal sign

while (nextchari=61)
nextchar = getc(plot);

/lvead the number of points

facanfiplot,"%d",&num_points);

nexichar=1;
/iscrap the rest of line

while (nextchart=13&&nextcharl=10)
nextchar = getc(plot);

Memory is allocated for the radius and circulation data and for an array of POINT
structures that will be used to plot the graph.
//allocate memory for the radius, circulation, and point vectors

r = (float *) malloc((num_points)*sizeof (float));

G = (float *) malloc((num_points)*sizeof (float));

point = (POINT *) malloc((num_points)*sizeof (POINT)),

The data is read using a for loop. The maximum values of circulation and radius
and the minimum value of circulation are determined using the same for loop.
{/read the point data and check for the maximum and minimum values of G and the maximum value of r
for (i=0; i<num_points; i++) {
fscanf(plot,"%f %f *, &r]i), &Gli]);
max_G = max(max_G,G[i]);
min_G = min(min_G,Gli]);
max_r = max(max_r,rfi]);
}

The graph and the horizontal and vertical axes are labeled. A frame is drawn around the graph
with the thick pen using the Rectangle function.

Ifptint the title and label the graph
SetTextAlign(PaintDC,TA_CENTER);
TextOut(PaintDC, (int)(320*width/640.0), (int)(10*height/480.0) title, strien(titie));

397

‘
&
%
4
1

- -;',_u- I

SetTextAlign(PaintDC,TA_LEFT);

TextOut(PaintDC. (int)((origin. x+10*del_x+30)*width/640.0),
(int)((origin.y)*height/480.0),"r/R\0" strien("r/R\0"));

TextOut(PaintDC, (int)(origin. x-60)*width/640.0),
(int)((origin.y-6*del_y)*height/480.0),"G\0", strien("G\0"));

//draw the outline of the graph
Rectangle(PaintDC, (int)((origin.x)*width/640.0), (int)((crigin.y)*height/480.0),
(int)((origin.x+10%del_x)*width/640.0), (int)((origin.y-10*del_y)*hecight/480.0));
The horizontal and vertical grid lines are drawn using a for loop and a series of
Rectangle function calls.
//select the thin pen and draw the horizontal and vertical lines on the graph as a series of rectangles
SelectPen(PaintDC,hThinPen);
for(i=1;i<10;i++) {
Rectangle(PaintDC, (int)((origin.x)*width/640.0), (int)((origin.y)*height/480.0),
(int)((origin.x+i*del_x)*width/640.0), (int)((origin.y-
10*del_y)*height/480.0));
Rectangle(PaintDC,
(int)((origin.x)*width/640.0), (int)((origin.y)*height/480.0),
(int)((origin.x+10*del_x)*width/640.0), (int)((origin.y-
i*del_y)*height/430.0));
}
The x axis is labeled using the small font. The maximum and minimum values for

the graph are calculated and adjusted. The number of decimal places to be used in the y

axis labels is then determined.

//select the small font and label the x-axis of the plot
SelectFont(PaintDC, hSmallFont);
for(i=0;i<11;i++){
length = sprintf(buffer, "%2.1f",(i*max_r)/10.0);

TextOut(PaintDC, (int)((origin.x-5+i*del_x)*width/640.0),
(int)((origin.y+10)*height/480.0), buffer, length);

}

398

{Af the maximum value is greater than zero, use logs to establish the maximum value as a round number
1/ slightly higher than the maximum value, otherwise set the maximum value t0 0.0

ifimax_G >= del)

max_G = pow(10.0,floor(log10(max_G)))*
(1.0+floor(max_G/(pow(10.0,floor(log10(max_G)))))):

else ifimax_G <= -del)
max_G=0.0;

/Af the minimum value is less than zero, use logs to establish the minimum value as a round number
// slightly lower than the minimum value, otherwise set the minimum value to 0.0

iflmin_G <= -del)

min_G = <(pow(10.0,floor(log 10(fabs(min_G))))*
(1.0+floor(fabs(min_G)/(pow(10.0,floor(log 10(fabs(min_G))))))));

else if{min_G >=0)
min_G =0.0; .
//if the maximum and minimum values are very close together, spread them apart slightly
ilmax_G - min_G<del)
{ max_G=max_G +0.1;
if(min_G - 0.1)> 0.0)

min_ G=min_ G-0.];

}
/ffind the difference between the maximum and minimum values
delta G=max_G - min_G;
if{fabs(max_G)>del)
decimal_places = min(floor(log10(fabs(max_G))),decimal_places);
if{fabs(min_G)>del)
decimal_places = min(floor(log10(fabs(min_G))),decimal_places);
/Nabel the y-axis based on the value of the decimal_places indicator
switch(decimal_places){

case 2:
{

399

BT

S T e

“‘

for(i=0:i<11,i++)(
length ~ sprintflbuffer, *%d",(int)(max_G-(i*deita_GV10.0)));

TextOut(PaintDC, (intX(origin. x+ hift*4-40)*width/640.0),
(int)((origin.y-3-+(i-10)*del_y)*height/430.0), buffer, length),

}
break;}
case 1
f:.(.-o.ku;m){
length = sprintRbuffer, *%5.0f",max_G-((i*delta_G)'10.0);
TextOut(PaintDC,(int)((origin. x+
shift*3-40)*width/640.0),
}(im)((oﬁgin.y—:H-(i-lO)‘del _y)*height/480.0), buffer, length);
break;}
case 0:
f(fr(i=0;i<ll;i++){

length = sprintf(buffer, *%S. 1" max_G-((i*delta_GV/10.0));
TextOut(PaintDC, (int)(origin. x+shift*3-40)*width/640.0),

(int)((origin.y-3+(i-10)*del_y)*height/480.0), buffer, length);

}
break;}
case -1:
fo{l(i=0;i<l Li++){
length = sprintf(buffer, *%3.2f*,max_G-((i*delta_Gy/10.0));

TextOut(PaintDC, (int)((origin.x+shift*2-40)*width/640.0),
(int)((origin.y-3+(i-10)*del_y)*height/480.0), buffer, length),

}
break;}
case -2.
f:r(i"kkl Li++){
length = sprintf(buffer, "%S.3f", max_G-((i*delta_G)/10.0));

400

-

TextOut(PaitDC, (int)((origin. x+shift* 1-40)*width/640.0),
)(mx(mw«i-mm_v)'wmo). bufier, length);
break;}
default :
{
for(i=0;i<11;i++){
leagth = sprintf{buffier, "%4S.4f",max_G-((i*deita_G)/10.0));
TextOut(PaintDC, (int)((origin. x-40)*width/640.0),
(int)((origin.y-3+(i-10)*del_y)*height/480.0), buffer, icagth);
}

break; }

The blue pen is selected and the screen coordinates of the points to be plotted are
then calculated and stored in the point array. A circle is drawn at each point.
I/select the blue pen for plotting the curve

SelectPen(PaintDC, hPlotPen);

//calculate the screen coordinates corresponding to each point (r,G), store
/I the values in point{i], and draw an ellipse there

for(i=0;i<num_points;i++){

point{i).x = (int)((origin.x+(r[i})/max_r)*10*de]_x)*width/640.0);
pointfil.y = (int)(origin.y<((Gli]-min_G)delta_G)*10*del_y)*height/480.0);

Ellipse(PaintDC, point[i].x}-2, point[i).y-2, point[i].x+2, point[i].y+2);

A curve is drawn through the points using the Polyline function. The original pen,
font, and brush are then selected back into the device context and the pens, font, and brush
created for this function are deleted. The memory allocated for data storage is then freed
//plot the curve by drawing a polyline through the points

Polyline(PaintDC,point,num_points);

‘.:‘ y ”W\"i?’ﬂ*’ﬁﬂ'\rhu.‘.ﬂ‘ - CERt

//select the original pen, fonts, and brush back into the device context
SelectPen(PaistDC, hOidPen); []
SelectFont(PaintDC,hOldFont);
SelectObject(PaintDC, hOldBrush);

//delete the pens, brush, and fonts created for this function

DeleteObject(hPlotPen);

DeleteObjectthThinPen); ’
DeleteObject(hThickPen);

DeleteObject(hBrush);

DeleteFont(hFoat); []
DeleteFont(hSmallFont);

@

//free the allocated memory

free(point);
free(r); []
free(G),

}

C.4.13 The write_output_file function.
The write_output_file function writes an output file that contains all of the PLL » |
text data available in the OQutput Viewer window. The function receives the handle to the

output file selected by the user.
void write_output_file(HFILE out) o
{ '
* Variable declarations * -
sere sesasene /
= char * buffer; /lpointer to a character buffer »
it num_bytes; //mumber of bytes read by _Iread
HFILE in; //pointer to a file
®
The write_output_file uses the malloc function to allocate a storage buffer that is
used for reading the data files and writing the data into the combined output file.
//allocate memory for reading the files into
»

buffer = (char *) malloc((max_buf_sz)*sizeof (char));

402

-

The function tests for the existence of each possible output file using the access
function. Each file that is found to exist is opened with read access using the _lopen
function, is read with the _lread function, is written to the output file using the _lwrite
function, and is closed using the _lclose function.

//read, and write to the overall output file, each available output file

if (access("summary.out®, 0) == 0) {

in= _lopen("summary.out®, READ);
pum_bytes= _lread(in, buffer, max_buf_sz);
_lwrite(out, buffer, num_bytes);

close(in); }

if (access(“detaill.out", 0) == 0) {

in = _lopen(“detaill.out®, READ);,
pum_bytes= _lread(in, buffer, max_buf_sz);
_lwrite(out, buffer, num_bytes);

close(in); }

if (access("detail2.out”, 0) ==0) {

in = _lopen("detail2.out®, READ);

pum_bytes= _lread(in, buffer, max_buf sz);
_lwrite(out, buffer, num bytes),
_lclose(in);

if (access(*fards.out", 0) == 0) {

in = _lopen(“fards.out*, READ);
num_bytes= _lIread(in, buffer, max_buf_sz);
_lwrite(out, buffer, num_bytes);

_close(in), }

if (access("duct.geo®, 0) == 0) {

in = _lopen("duct.geo”, READ),

pum_bytes= _Iread(in, buffer, max_buf_sz);

_lwrite(out, buffer, num_bytes); ~-
close(in), }

if (access("stress.out”, 0) == 0) {
in = _Jopen("stress.out”, READ);
num_bytes= _liread(in, buffer, max_buf_sz);

Iwme(ou, buffer, mm_bywl),
_Iclose(in);

if (access("nonaxi.cir”, 0) == 0) {

in = _lopen("nonaxi cir", READ);

nsum_bytes= _Iread(in, buffer, max_buf_sz);

_lwrite(out, buffer, num_bytes);

lclose(in), }

if (access("nonaxi.for”, 0) == 0) {

403

e
® ofe

o g S -

ia = _lopen(“nonaxi.for", READ);
sum_bytes= _Iread(in, buffer, max_buf_sz),
_Iwrite(out, buffier, sum_bytes),

_Iclose(in); }

if (access("nonaxi.cmp®, 0) == 0) {
in = _lopen("nonaxi.cmp”, READ),
num_bytes= _lread(in, buffer, max_buf_sz);
_lwrite(out, buffer, num bytu),
_Iclose(in);

if (access("noanaxi.bar®, 0) == 0) {

in = _lopen("nonaxi.har*, READ);
pum_bytes= _lread(in, buffer, max_buf_sz);
_lwrite(out, buffes, num_bytes);

_Iclose(in); }

}
C.4.14 The write_pbd_{files function.

The write_pbd_files function makes copies of the existing PBD output files using
the output file root specified in the PBD Settings dialog box. The function receives no
arguments.

void write_pbd_files(void)
{

sy es -

‘dech:cvanabletthatmdeﬁnedmthcpllcﬁlcandﬂm .
‘wnllbeusedmthlsﬁmctlon
. . /

extern char pbd_output_root[9];

/ *
* Variable declarations *
** e * seses/
char dest(MAXFILE + MAXEXTY; //destination file name
OFSTRUCT ofsource; {/data structure containing
OFSTRUCT ofdest; // information on the opened file
HFILE hfsource, /Mandles to the source and
hidest; // destination files

The function tests for the existence of each possible PBD output file using the
access function. A destination filename is created for each file that is found to exist with

404

the famerge function. The famerge function receives a pointer to a filename, a pointer to a
drive, a pointer to a directory, a pointer to a file root and a pointer to a file extension. The
function builds a filename from the components supplied and stores it in the filename array
passed as the first argument.

Each source and destination file is then opened using the LZOpenFile function.
The source file is copied directly into the destination file using the LZCopy function and
both files are closed using the LZClose function.
/if the pbdout.ibg file exists,

if{access("pbdout.ibg”, 0) == 0) {

/Rhen create a destination file name by merging the pbd_output_root name and
// the .ibg extension

fnmerge(dest NULL,NULL.pbd_output_root,”.ibg");
/lopen the source and destination files)
hfsource = LZOpenFile("pbdout.ibg", &ofsource, OF_READ);
hfdest = LZOpenFile(dest, &ofdest, OF_CREATE),
/copy the source file into the destination file
LZCopy(hfsource, hfdest);
//close both files
LZClose(hfsource),
LZClose(hfdest); }
//repeat the process for all possible pbd output files
if{access("pbdout.cbd®, 0) == 0) {
famerge(dest NULL,NULL,pbd_output_root,".cbd");

hfsource = LZOpenFile("pbdout.cbd”, &ofsource, OF_READ),
hidest = LZOpenFile(dest, &ofdest, OF_CREATE);

LZCopy(hfsource, hfdest);

LZClose(hfsource);

LZClose(hfdest); }
if{access("pbdout.bub®, 0) == 0) (

e 0_‘: R R

AT R A R S

hidest = LZOpenFile(dest, &ofdest, OF_ CREATE);
LZCopy(hfsource, hidest);

LZClose(hfsource);

LZClose(hfdest), }

if{access("pbdout.cmv®, 0) == 0) { @
famerge(dest, NULL,NULL,pbd_output_root,".cmv");
hfsource = LZOpenFile("pbdout.cmv”, &ofsource, OF_READ),
hfdest = LZOpenFile(dest, &ofdest, OF_CREATE); »
LZCopy(hfsource, hidest);
LZClose(hfsource);
LZClosc(hfdest); }

if{access("pbdout.cmf”, 0) == 0) {
famerge(dest, NULL,NULL,pbd_output_root,”.cmf"), »
hfsource = LZOpeuFile("pbdout.cmf®, &ofsource, OF_READ),
hfdest = LZOpenFile(dest, &ofdest, OF_CREATE),
LZCopy(hfsource, hidest);
LZClose(hfsource);
LZClose(hfdest); }

wcess("pbdout.tot®, 0) == 0) {
fomerge(dest, NULL,NULL,pbd_output_root,".tot");
hfsource = LZOpenFile("pbdout.tot*, &ofsource, OF_READ);
hfdest = LZOpenFile(dest, &ofdest, OF_CREATE),
LZCopy(hfsource, hfdest);
LZClose(hfdest); }

if{access(“pbdout.gsp”, 0) == 0) {
famerge(dest, NULL,NULL,pbd_output_root.".gsp"),
hfsource = LZOpenFile("pbdout.gsp”, &ofsource, OF_READ);
hfdest = LZOpenFile(dest, &ofdest, OF_CREATE), b
LZCopy(hfsource, hfdest); ;

LZClose(hfdest), }

if{access("pbdout.sol”, 0) == 0) {
fomerge(dest, NULL,NULL,pbd_output_root,”.sol"); >
hfsource = LZOpenFile("pbdout.sol®, &ofsource, OF_READ);
hfdest = LZOpenFile(dest, &ofdest, OF_CREATE);
LZCopy(hfsource, hfdest);
LZClose(hfsource);
LZClose(hfdest); }

if{access("pbdout kiq", 0) == 0) {
famerge(dest NULL,NULL,pbd_output_root,” ktq");
hfsource = LZOpenFile("pbdout ktq", &ofsource, OF_READ);
hidest = LZOpenFile(dest, &ofdest, OF_CREATE);
LZCopy(hfsource, hfdest);
LZClose(hfsource); >
LZClose(hfdest); }

iffaccess("pbdout.obg”, 0) == 0) {

-w
famerge(dest,NULL,NULL,pbd_output_root," obg"); : .
hfsource = LZOpenFile("pbdout.obg”, &ofsource, OF_READ), ,
hfdest = LZOpenFile(dest, &ofdest, OF_CREATE), ®
I ZCopy(hfsource, hidest); ’
LZClose(hfsource); -
LZClosc(hfdest); } @®
if{access("pbdout.ben", 0) == 0) {

fnmerge(dest, NULL,NULL,pbd_output_root,” ben");

hfsource = LZOpenFile(*pbdout bsn®, &ofsource, OF_READ); »

hfdest = LZOpenFile(dest, &ofdest, OF_CREATE),

LZCopy(hfsource, hfdest),

LZClose(hfsource);

LZClose(hfdest); }

iRaccess("pbdout.sgr*, 0) == 0) { ’
famerge(dest, NULL,NULL,pbd_output_root,".sgr");
hfsource = LZOpenFile(*pbdout.sgr”, &ofsource, OF_READ),
hidest = LZOpenFile(dest, &ofdest, OF_CREATE),
LZCopy(hfsource, hfdest);

if{taccess("pbdout.rdc”, 0) == 0) {
famerge(dest, NULL,NULL,pbd_output_root,".rdc");
hfsource = LZOpenFile("pbdout.rdc”, &ofsource, OF_READ);
hfdest = LZOpenFile(dest, &ofdest, OF_CREATE),
LZCopy(hfsource, hfdest); » ©
LZClose(hfsource);
LZClose(hfdest); }

if{access("pbdout.vcp®, 0) == 0) {
famerge(dest, NULL,NULL,pbd_output_root,”.vcp”);)
hfsource = LZOpenFile("pbdout.vcp”, &ofsource, OF_READ); '
hfdest = LZOpenFile(dest, &ofdest, OF_CREATE); "
LZCopy(hfsource, hfdest),

LZClose(hfdest); }

iftaccess("pbdout.hdi®, 0) == 0) { »
famerge(dest, NULL,NULL,pbd_output_root,".hdi");
hfsource = LZOpenFile("pbdout.hdi”, &ofsource, OF_READ);
hfdest = LZOpenFile(dest, &ofdest, OF_CREATE);
LZCopy(hfsource, hfdest),
LZClose(hfsource);
LZClose(hfdest); } »

if{access("currpbd.err®, 0) == 0) {
famerge(dest, NULL,NULL,pbd_t _root,”.err”);
hfsource = LZOpenFile("currpbd.err”, &ofsource, OF_READ);
hfdest = LZOpenFile(dest, &ofdest, OF_CREATE),

LZCopy(hfsource, hfdest); »
LZClose(hfsource),
LZClose(hfdest); }
407
»

iftaccess("currpbd.cbs®, 0) == 0) {
famerge(dest, NULL,NULL.pbd_output_root,” cbs");

hfsource = LZOpenFile("currpbd.cbs”, &ofsource, OF_READ),

hidest = LZOpenFile(dest, &ofdest, OF_CREATE),

LZCopy(hfsource, hfdest);
LZClose(hfsource);
LZClose(hfdest); }
408
o ®) e @

c @

@ & ¢

Bk, R R e ol wesivsvension: d v e o e M

-‘.-

APPENDIX C.5
Miscellaneous PLL functions.

C.5 Miscellaneous PLL functions.

The PLL Windows™ application uses 21 different functions in addition to those
already described in sections C.1 through C.4. Two of the functions are used to handle
the Output Viewer window scroll bar input. Ten of the functions are used to write files
that provide input to the PLL and PBD FORTRAN executables. Seven functions are used
to read standard PLL input data or project files and files written by the PLL FORTRAN
executable. The final two functions are used to initialize global variables and to delete
temporary data files. The function declarations are listed below in the order in which the
functions will be presented.

//scroll bar handlers
void WMVScroll_Handler(tHWND hWnd, HWND hwndCtl, UINT code, int pos);
void WMKeydown_Handler(tHWND bWnd, UINT vk, BOOL fDown, int cRepeat, UINT flags),

//file writing functions

void write_input_file(FILE *blade);
void write_project_file(FILE *blade);
void write_pbdadmin_file(void);

void write_default_file(FILE *blade);
void write_wakecalc_file(FILE *blade);
void write_ductforc_file(FILE *blade);
void write_abstules_file(FILE *blade);
void write_thsttorg file(FILE *blade);
void write_wkalcirc_file(FILE *blade);
void write_misc_files(void);

/ffile reading functions

void read_blade file(FILE *blade, int component);
void read_wake file(FILE *blade, int component);
void read_input_file(FILE *blade);

void read_project_file(FILE *blade);

void read_plot_file(FILE *bladc);

void read_glavert_file(FILE *biade);

void read_unload_dat_file(FILE *blade);

//misc functions

void delete files(int file_flag);

410

@ of

C.5.1 The WMVScroll_Handler function.
The WMVScroll_Handler function responds to WM_VSCROLL messages. The
function uses a switch to determine and perform the required response.

void WMVScroll_Handler(HWND hWnd, HWND bwndCtl, UINT code, int pos)
{

The function uses a local integer variable to record the inital position of the scroll

box.
int temp; //temporary integer value used to
{/ detect changes in scroll
// bar position
//record the initial scroll bar position
temp = Scroll_Pos;

//this switch specifies the response the scroll bar messages

The switch responds to messages generated by clicking on the upper and lower
arrows of the scroll bar, the scroll bar regions above and below the scroll box, and clicking
and dragging the scroll box itself.

switch(code)

{

Clicking on the up and down arrows on the scroll bar causes messages with the
SB_LINEUP and SB_LINEDOWN codes. The response in these cases is to increment or
decrement the Scroll_Pos variable by one. The Scroll_Pos variable is a global variable
that reflects the position of the scroll box on the Qutput Viewer window vertical scroll
bar.

//alter the value of Scroll_Pos as indicated by the message

case SB_LINEUP:

{ Scroll_Pos—;
break;

}

case SB_LINEDOWN:

411

Clicking on the scroll bar above or below the scroll box causes messages with the
SB_PAGEUP and SB_PAGEDOWN codes. The response in these cases is to increment
or decrement the Scroll_Pos variable by thc number equal to the number of lines that may

be displayed in one page.

case SB_PAGEUP:

{ Scroll_Pos-=LinesInWindow;
break;

}

case SB_PAGEDOWN:

{ Scroll_Pos+=LinesInWindow;
break;

}

The SB_THUMBTRACK case responds to the user moving the scroll box.

case SB_THUMBTRACK:
{ Scroll_Pos=pos;
break;

, ;

}

The Scroll_Pos variable is constrained to be between zero and the total number of
lines of text being displayed, the current range of the scroll bar, by a pair of max and min
macro calls.

//Scroll_Pos must be between 0 and the total lines of text

Scroll_Pos = max(Scroll_Pos,0);

Scroll_Pos = min(Total_Lines, Scroll_Pos);

The scroll bar postion is set to the position indicated by the Scroll_Pos variable,
and the Output Viewer window is repainted if the new scroll bar position is not the same
as the initial scroll bar position.

//set the scroll bar position to that indicated by Scroll_Pos

SetScrollPos(hWnd, SB_VERT, Scroll_Pos, TRUE);

412

Y 7
)

/A Scroll_Pos has changed, cause the screen to be repainted
ifScroll_Posi=temp) InvalidateRect(hWad, NULL, TRUE),

C.5.2 The WMKeydown_Handler function.

The WMKeydown_Handler function translates keyboard entries and sends
appropriate messages to the vertical scroll bar. This is done in order to allow the user to
contol the Output Viewer window vertical scroll bar messages using the Up Arrow, Down
Arrow, Page Up and Page Down keys.
void WMKeydown_Handler(HWND hWnd, UINT vk, BOOL fDown, int cRepeat, UINT flags)
{switch(vk)
I}iftheupm,downamw.pageup,orpagedownkeyispmd,sendﬂwappmpﬁatemgetome
// scroll handler

This switch tests the unsigned integer identifier of keyboard entry messages.
Messages corresponding to the Up Arrow, Down Arrow, Page Up and Page Down keys
cause the SendMessage ﬁmction to be used to send a WM_VSCROLL message with the
appropriate code to the Output Viewer window. This allows keyboard input to operate
the vertical scroll bar.

case VK_UP:

{ SendMessage(hWnd, WM_VSCROLL, SB_LINEUP, OL);
break;

}

case VK_DOWN:

{ SendMessage(hWnd, WM_VSCROLL, SB_LINEDOWN, OL);
break;

}

case VK_PRIOR:

{ SendMessage(hWnd, WM_VSCROLL, SB_PAGEUP, OL);
break;

}

case VK_NEXT:

413

ol ania DRI SMIPRL L P PR T

'
T

SeadMessage(hWad, WM_VSCROLL, SB_PAGEDOWN, OL);
break;

gvv -
d

C.5.3 The write_input_file function.

The write_input_file function is used to write temporary input files in the format of
standard PLL input files. The files written are used as input for the PLL FORTRAN
executable. The function receives a pointer to a FILE structure as an argument.

void write_input_file(FILE *input)

{

I N hd

* declare variables that are defined in the pll.c file and that will be used in this function *
/

extern char RUN_ID|21], image hub, image duct, ringed_propellerimax_comp],
BLDIN[max_comp][21], WKIN[max_comp][21};

extern int use_curr_blade, NBLADE[max_comp), LDEV;

extern float DCHD, DCD, DTHK, DDIAM, XDUCT, VS, RHO, DSHAFT,
XDLOC[max_comp], XDIAM[max_comp], XWDIAM[max_comp};

14
* Variable declarations *

A /
struct dated; //date structure
int M; /Noop counter

//ill the date structure with the current date
getdate(&d);
/fwrite the RUN_ID line

fprintRinput," PROPELLER LIFTING LINE RUN: %s %d/%d/%d \n",
RUN_ID,d.da_mon,d.da_day,d.da_year);

//vrite the file description
fprintRinput,” OVERALL INPUT FILE \n");
/write the ship speed

414

b’

fprintinput ™. Ship speed (R/sec)a", VS);
/wride the thuid donsity
fprintRinput %S Fluid Deasity\n",RHO);
Ifwrite the shaft centerline depth
fprintfinput, %L Shaft centerline depth (f)\a”,
DSHAFT),
Iwrite the sumber of components
fpeintflinput,*%d Number of components\n® LDEV);

/hwrite whether or not an image hub is used

iflimage_hub=="Y")
fprintf{input,*%c
eclse
fprintRinput, "%c

.......... Image hub to be used\n”, image_hub);

.......... No image hub to be used\n”, image_hub);

//write whether or not an image duct is used

if{limage_duct=="Y")
fprintf{input,*%c

fprintfinput, “%c
/iwrite the duct data, if there is one
if{image_duct=="Y"){

/lwrite the duct chord length

fprintfinput, "%
diameter)\n”",DCHD);

/fwrite the duct drag coefficicnt

Ifwrite the duct thickness
fprintf{input,"%f

Ifwrite the duct diameter

.......... Image duct to be used\n®, image_duct);

.......... No image duct to be used\n”, image_duct);

..........

..........

..........

(Duct chord length)/ (Component #1

Drag coefficient for the ductin®, DCDY);

(Duct thickness)/ (Component #1 diameter)\n” DTHK);

415

e 2 R R AL

for(M=O;M<LDEVM++){
JAf there is no image duct,
if{image_duct == N') {
/write whether or not the propeller is ringed
if{ringed_propeller{M}=="Y")

fprintfinput,"%c Component %d is \
a ringed propeller\n”,ringed_propeller[M],M+1),

clse

fprintRinput,"%< Component %d is not a \
ringed propeller\n® ringed_propeller{M] . M+1);

}
{iwrite the axial location if there is more than 1 propeller
iRLDEV>1){

fprintf(input,"%f Axial location of component %d
(®)\n" XDLOC[M],M+1);

fprintf(input,"%d Number of blades on component %d\n", NBLADE{M],M+1),

fprintRinput,"%f Diameter of component %d (ft)\n", XDIAM[M],M+1);

fprinti(input,"curr¥%d.bld File containing blade inputs for comp. %d\n",M+1);

416

adi .

"’

fpriminput,“%s File containing blade \
inputs for comp. %ed\n" BLDIN{M*21],M+1),
I/wrrise the diameter of the wake
fpointRinput,"%fDiameter of wake for component %d (ft)\n", XWDIAM{M].M+1);
/fwrrite the wake flilc name
fprintf{input,“%s File containing wake inputs for comp. %d\n", WKIN[M*21],M+1);

C.5.4 The write_project_file function.

The write_project_file function is used to write project files in response to
File|Save Project selections from the main menu. The function receives a pointer to a
FILE structure as an argument.

{void write_project_file(FILE *proj)

/ .
* declare variables that are defined in the pil.c file and that will be used in this function *

1
()

extern char RUN_IDj21}, INPUTFILE[20];

extern int LDEYV, optimize_rpm, optimize_diameter, maximize thrust, no_runtime_options,

effective_wake_flag, tunnel opetwon flag, duct_forces_flag,
_ting_vm forces_flag, circ_opt_wake_alignment flag,

estimate_duct_circulation_flag, estimate_damping_flag, NPANEL,
contraction_ratio_flag, wake_alignment flag, circulation_optimization_flag,
chord qmmmon_ﬂag. duct_mean_line_flag, empirical_vcd_flag,

propeller_type_flag,
propelier_material;

extern flost horsepower, RPM{max_comp), thrust_coefficient, estimated_duct_circulation,
torque_ratio, damping, propelier_duct_thrust_ratio, propeller_ring_thrust_ratio,
thrust_estimate, CLMAX, TCHDMAX, HUBCHD{max_comp], TTIP, CDCON,
RHVOR, PL1, PL2, CONRAT, GAPFAC,
material_constant{user_defined_material+1](2], rake{2],

417

o e A s v AR
[) .‘-

e gg—c i

® Varisble declarations

strect dae d; //dste structure
imt M; {loop counter
/7811 the date structure with the current date
gerdate(&d);
Ifwrise the RUN_ID line

i* PROPELLERLIFTINGLINERUN: %s %d/%d/%d \n",
RUN_ID,d.da_mon,d.da_day,d.da_year);

/hwrite the file description
fpeintf(proj,” OVERALL PROJECT FILE \n%20s Overall input \
filename\n" INPUTFILE),

Ifwrite the RUN_ID

fprintf(proj,"%s RUN ID\n",RUN_ID);
/iwrrite the number of components

fprintRpeoj,"%d Number of components\n® LDEV);
/iwrite the rpm for each component

for(M=0;M<LDEV:M++)

fprintRpro,"%f RPM of component #%d\n", RPM[M],.M+1);
/fwrite the Optimize rpm flag

fprintf(proj,"%d Optimize rpm flag\n", optimize_rpm);
Ifwite the Optimize diameter flag

fprintf{proj,"%d Optimize diameter flag\n", optimize_diameter);
/hwrrite the Maximize thrust flag

forintfproj,"%d Maximize thrust flag\n", maximize_thrust);
/fwrite the Horsepower for maximizing thrust

fprintf(pro,"%fHorsepower for maximizing thrust\n®, horsepower);

418

Iiwrrite the Theust coefficient for maximiziag thrust

S e Y e TN

fprintBprci "% Thrust coefficieat for maximizing thrust\a” thrust_cocfficient);

Iwrite the No reatime options fiag ®
fprinefproj,"%d No runtime options fiag\n®, no_runtime_options); ;

Ihwrite the Effective waks flag 4
fpeintKproj™%d Effective wake flag\n”, effective_wake_fiag);

/fwrite the Tunnel operation flag
fprintfproi"%d Tunsel operation flag\n®, tunnel_operation_fiag); ’

Ifwrite the Duct forces flag
fprintpeoi,"%d Duct forces flaghn®, duct_forces_flag);

Ifwrite the Duct ring vortex forces flag ’
fprintf(proi,"%d Duct ring vortex forces flag\n®, duct_ring_vortex_forces_flag);

Ihwrite the Circ opt wake alignment flag
fprintfpro,™%d Circ opt wake alignment flaghn®, circ_opt_wake_alignment_flag); » o

/iwrite the Estimate duct circulation flag

fprintf(proj,"%d Estimate duct circulation flag\n®, estimate_duct_circulation_flag);
Ifwrite the Estimate duct circulation flag b’

fprintiproj."%d Estimate damping flag\n®, estimate_damping_flag); '
Itwrite the Estimated duct circulation

fprintf(proj," %L Estimated duct circulation\n®, estimated_duct_circulation); ’
Iiwrite the Torque ratio }

foritfpro,"%f Torque ratic\n”, torque_ratio);
/fwrite the Damping P

fprintf(proj,"%e Damping\n®, damping);
Ifwrite the Propeller duct thrust ratio

Sorintf(proi, %L Propeller duct thrust ratio\n®, propeller_duct_thrust_ratio); »
/fwrite the Propeler ring thrust ratio

419

/fwreies the Thrust estimate ’
fprintfpeo),™ L. Thrust estimate\n®, thrust_estimate), @
Iwrrite the maximum lift coofficient
fprintRproj "%Maximum Lift coefficient\n®, CLMAX); ’
//write the maximum thickness %o chord ratio
fprintfipro, %l Maximum thickness to chord ratio\n”, TCHDMAX);
Ifwrite the minimum chord/diameter ratio at the root for cach component ’
for(M=~0;M<LDEV.M++})
fprintf(peoj,"%f Minimum chord/diameter ratio at \
the root for cach component\n®, HUBCHD[M)); ()
Iwrite the tip thickness to chord ratio
fprintfproj,"%f Tip thickness to chord ratio\n®, TTIP);
/fwrite the number of pancls > ©
fprintfiproj,™%d Number of pancls\n”, NPANEL);
Ifwrite the drag coefficient multiplier
fprintRproj, "L Drag coefficient multiplier\n®", CDCON); p7
Iwrite the hub vortex radius to hub radius ratio C
fprintRproj, %S Hub vortex to hub radius ratio\n”, RHVOR);
Ifwrite the first Lagrange multiplier »
fprintRproj %l First Lagrange multiplier\n®, PL1);
Ifwrite the second Lagrange multiplier
fprintRproj,"%L Second Lagrange multiplier\n®, PL2); »
Ifwrite the contraction ratio flag
fpeintRproj*%d Contraction ratio flag\n”, contraction_ratio_flag);
/fwrite the conrat to the file »
fprintRpro, %L Contraction ratio\n”, CONRAT);
420 ,
o e e '

IAwtits the wake_alignment_fiag
fprintlpro,*%d Wake alignment flag\n", wake_alignment_flag);
Iwtite the circulation_optimization_flag
fprintflproj,"%d Circulation optimization flag\n®, circulation_optimization_flag);
Ifwrite the chord_optimization_flag
fprinti(peoi,"%d Chord optimization flag\n®, chord_optimization_flag)

fpeintf(peoj,"%d Duct mean line flag\n®, duct_mean_line_flag);
Ihwrite the empirical_vcd_flag

fprintf(peoj,%d Empirical vcd flag\n®, empirical_ved_flag);
/hwrrite the duct tip gap factor

fpeintRproj," %L Duct tip gap factor\n", GAPFAC);
/iwrite the propeller_type_flag

fpeintf(proj,*%d Propeller type flag\n®, propeller_type_flag)
/fwrite the propeller_material

fprintf(proj,"%d Propeller material\n®, propeller_material);
//write the user defined propeller material constants

fprintfproj,™%f Ultimate Tensile Strength(ksi)\n®,

material_constant[user_defined_material][0});
fprintRproj %L Specific Weight(Ib/in3)\n",

material_constant{user_defined_material]{1});
/Iwrite the rake at hub and tip for abs calculations

forintfproi,"%f Rake at hub\n", rake{0]);
fprintf(proi,"%f Rake at tip\n®, rake{1]);

C.5.5 The write_pbdadmin_file function.

421

The write_pbdadmin_file function writes temporary PBD main administrative files
for use by the PBD FORTRAN executable using the settings in the PBD Settings dialog
box. The function receives no arguments.

void write_pbdadmin_file(void)

{

4] [12 Py

* declare variables that are defined in the pll.c file and that will be used in this function *
e /

extern char RUN_ID{21], pbd_run_title{81], image_hub, image_duct;

extern int NBLADE[max_comp}, NKEY, MKEY, ISPN, MCTRP, IHUB, IDUC,
MRPINjmax_comp], MLTYPE, MTHICK, IMODE, NWIMAX, NITER, RADWGT,
NUFIX, NPLOT, pbd_component;

extern float DGAP, TWEAK, BULGE, HGAP, HUBSHK, CDRAG, VS, RPM[max_comp],
XDIAM[max_comp}, XULT, XFINAL, DTPROP,

f
* Variable declarations .

* * /
FILE ‘*proj, *dat; //pointers to file structures
int iLj {Mloop counters
float temp, /hemporary float for reading data
ADVCO; {//advance coefficient of the
/1 propeller, J_s=(V_s/nD)
//open the file to be written

proj = fopen(“currpbd.pbd®, "w");
Ifwrite the RUN_ID line
fprintf(proj,"PBD14.2 currpbd.pbd %s \n®, pbd_run_title);
/fwrite the name of the b-spline file
if{pbd_component==0)
fprintf{proj, "currpbd1.bsn\n");

fprintf{proj,"currpbd2.bsn\n");

422

e o@

/hwrise the name of the velocity file
fprimtRproj, “currpbd. veln®);
/horeite ablade, skey, and mkey
fprintfproj,” %d %d %d \n*,NBLADE[pbd_componcat] NKEY, MKEY),
Ihwrise ispa
fprintfi(peoj,” %d \n" ISPN),
//write mctrp and the control points
fprintf{proj,” %d " MKEY-1);
for(i=1; i<=MKEY-1; i++)
fprintR(proj,” %d®, i),
/fwite ihub, hgap, iduc, dgap
if{limage_hub=="Y") .
fprintf{proj,"n %d *, (int)((floatMKEY)/3.0));

fprintfR(proj,"n 0 *);
fprintf(proj,” %f °, HGAP);
if(image_duct=="Y")
fprintf(proj,” %d *, (int)((loat\MKEY)/3.0));

fprintf(proj,” 0 °);
fprintR(proj,” %f \n®, DGAP);
/fvrite nx, -nx, mitype, mithick

fprintf(proj,” %d %d %d %d \n", MRPIN[pbd_component],-MRPIN[pbd_component], MLTYPE,

MTHICK),
/iwrite imode
fprintf{proj,” %d \n*, IMODE),
/iwrite nwimax

423

. ;
’ "I

HAER XN

fprintf(proj,” %d \n*, NWIMAX);
/hwrite niter, tweak, bulge, radwgt, nufix

fprintf(proj,” %d %I %I %A %d \n", NITER, TWEAK, BULGE, RADWGT, NUFIX),
/fwrite nplot and hubshk

fprintf{proj,” %d %I \n". NPLOT, HUBSHK);
/Nwrite cdrag

fprintRproj,” %f \n", CDRAG);
/icalculate the advance coefficient, use 200 if the component is a stator and use RPM([0] if the absolute
WRPMIOI is <3.0(already an advance coefficient)

if{fabs(RPM[pbd_component])<del)
ADVCO =200.0;

if{fabs(RPM[pbd_component})<3.0&&fabs(RPM[pbd_component})>del)
ADVCO = RPM[pbd_component];
else
ADVCO = ((RPM[pbd_component]*2.0*PL/60.0)*XDIAM|pbd_component]);
/fwrite advance coefficient, xult, xfiral, and dtprop
fprintf{proj,” %f %f %f %", ADVCO, XULT, XFINAL, DTPROP);
flopen the file containing G, /R, t/s, UA, UAU, UT, and UTU
i _component==0)

dat = fopen("PBDADMI1.DAT", "r");

dat = fopen("PBDADM2.DAT", *r");
/Noop through the data, read from the dat file and write to the proj file
for(i=0; i<7; i++) {
fprintf{proj,"\n"),
for(7=0; j<MRPIN[pbd_component}; j++) {

424

facanf{dat, "%, &temp);
fprintf{(proj,” %", temp);
}
}
Ifclose both files

C.5.6 The write_default_file function.
The write_default_file function writes the default value file that the PLL
FORTRAN executable uses to initialize the variables that appear in the Current Settings »
menu of the original version of PLL. It receives a pointer to a FILE structure as an
argument.

void write_default_file(FILE *blade) »
{

Fadd L J *e Lt

* declare variables that are defined in the pll.c file and that will be used in this function *
* sesssnen /

b’
extern float CLMAX, TCHDMAX, HUBCHD[max_comp], TTIP, CDCON, RHVOR, PL1, PL2, B
GAPFAC, CONRAT;
extern int NPANEL, contraction_ratio_flag, wake_alignment_flag, circulation_optimization_flag,
. chord_optimization_flag, duct_mean_line_flag, empirical_vcd_flag, LDEV;
K]
! *%
* Variable declarations *
. sess bbb */
int M, //counter for the loops
]
//write the maximum lift coefficient
fprintf{blade, "%f\n",CLMAX),
Ifwrite the maximum thickness to chord ratio
]
fprintfiblade, "%fn", TCHDMAX),
425
]

/fwreite the minimum chord/diameter ratio at the root for each component
for(M=0;M<LDEV.M++) [
fprintf(blade,"%A\n", HUBCHD{M]),
I/write the tip thickness to chord ratio
fprintRblade, “%f\n", TTIF); »
/fwrite the number of pancis
fprintfiblade,"%d\n",NPANEL),
/hwrite the drag coefficient multiplier
fprintfiblade,"%f\n",CDCON);
[hwrite the hub vortex radius to hub radius ratio
fprintfiblade,"%f\n",RHVOR), »
/Hwrite the first Lagrange multiplier
fprintfiblade, "%f\n",PL1),
/fwrite the second Lagrange multiplier
fprintfiblade, *%f\n",PL2);
/fwrite the contraction ratio flag
fprintR{blade,"%d\n",contraction_ratio_flag);

//if the contraction_ratio_flag = 1, the entry will be the default value, otherwise, must write the conrat to
// the file

if{ contraction_ratio_flag == 0)
¢ fprintf{blade,"%f\n", CONRAT);
/#write the wake_alignment_flag
fprintfiblade,"%d\n",wake_alignment_flag);
. /fwrite the circulation_optimization_flag
fprintfiblade,"%d\n" circulation_optimization_flag);
Ifwrite the chord_optimization_flag
(] fprintfiblade,"%d\n" chord_optimization_flag);
/fwite the duct_mean_line_flag

426

fprimfiblade, “%d\a",duct_mean_line_flag),
Ifwrite the empirical_vod_flag

fprint(blade, ", cmpirical_vod_flag);
Ihwreite the duct tip gap factor

fprintf(blade, "%A\n", GAPFAC),

C.5.7 The write_wakecalc_file function.

The write_wakecalc_file function writes the file that is read by the PLL
FORTRAN executable to determine if the effective wake should be calculated and if the
component(s) is(are) operating in a tunnel. The function receives a pointer to a FILE
structure as an argument.

void write_wakecalc_file(FILE *blade)
{

,AA hd - -
* declare variables that are defined in the pll.c file and that will be used in this function *
* /

extern int effective_wake_flag, tunnel_operation_flag;

/wrrite the effective wake flag
fprintfiblade, "%d\n", effective_wake_flag);

/iwrite the tunnel_operation_flag
fprintfiblade, "%d" tunnel_operation_flag);

C.5.8 The write_ductforc_file function.

The write_ductforc_file function writes the file that is read by the PLL FORTRAN
executable to fleternline if the duct forces or duct ring vortex forces should be ignored and
if an estimate of duct circulation should be used and the value of the estimate. The

function receives a pointer to a FILE structure as an argument.

427

s
kS
i
“
<
"
o
1

void write_ductforc_file(FILE *blade)
{
* declare variables that are defined in the pli.c file and that will be used in this function *

14

extern int duct_ring_vortex_forces_flag, duct_forces_flag, estimate_duct_circulation_flag;

extern float estimated_duct_circulation;

Iiwrite the duct ring vortex forces flag
fprintfiblade, "%d\n",duct_ring_vortex_forces_flag),
/write the duct forces flag
fprintRblade, "%d\n®,duct_forces_flag);
/iwrite the estimate duct circulation flag
fprintfiblade, "%d\n" estimate_duct_circulation_flag);
Iiwrite the estimated duct circulation |
fprintf{blade, "%A\n" estimated_duct_circulation);
}
C.5.9 The write_absrules_file function.
The write_absrules_file function writes the file that is read by the PLL FORTRAN
executable to determine whether the propeller is fixed or controllable pitch, the rake, and
the material properties for the purposes of the ABS Rules strength calculations. The

function receives a pointer to a FILE structure as an argumeéit.

void write_sbsrules_file(FILE *blade)
{

o
* declare variables that are defined in the pli.c file and that will be used in this function *

e [

extern int propeller_type_flag, propelier_material;
extern float material_constant[user_defined_material+1}]2], rakef2];

428

.'i

/hereite the ~ropeller_type_flag
fprintRblade, “Y%d\n" propelier_type_flag);
/fwrite the material UTS in ksi
fprintfblade, "%\n", material_constant{propelier_material}[0]);
Ifwrite the material specific weight in bs per cubic inch
fprintfblade, "%f\n", material_constant{propeller_material){1]);
/fwrite the rake/diameter at the tip
fprintfiblade, "%f\n", rake{1]);
Ifwrite the rake/diameter at the hub
W"‘ﬂn',nkclol);
}

C.5.10 The write_thsttorq_file function.

The write_thsttorq_file function writes the file that is read by the PLL FORTRAN
executable to determine the thrust estimate for the project and the desired ratio of thrust
between components two and one and the ratio of duct or ring thrust to total thrust. The

function receives a pointer to a FILE structure as an argument.

void write_thsttorq file(FILE *blade)
{

/ .
* declare variables that are defined in the pll.c file and that will be used in this function *

extern float thrust_estimate, torque_ratio, propeller_duct thrust_ratio, propeller_ring_thrust_ratio;

/fwiite the thrust estimate
fprintf(blade, "%fn" thrust_cstimate);

Ifwite the torque ratio
fprintf{blade, "%f\n" torque_ratio);

Iwrite the thrust ratio between the propeller and the total thrust for the ducted case

429

5‘.‘
|

e T ALy

TR AT TR RN

e

ST T T

> i

i
[
#

fprintfibiade, “%\n" propelier_duct_thrust_ratio);
Ihwrite the Vhrust ratio betweea the propelier and the total thrust for the ringed case
fprintfblade, “%f\n",propeller_ring_thrust_ratio);

C.5.11 The write_wkalcire_file function.

The write_wkalcirc_file function writes the file that is read by the PLL FORTRAN
executable to determine if the wake should be aligned during the circulation optimization
procedure. The function receives a pointer to a FILE structure as an argument.

void write_wkalcirc_file(FILE *blade)
{

‘dechnvmmamdeﬁnedmunpucﬁkandthatwmbeusedmthlsﬁmwon b

L2214 2] *e888/

extern int circ_opt_wake_alignment_flag;
/Hwrite the circ_opt_wake_alignment_flag

fprintf(blade,"%d\n",circ_opt_wake_alignment_flag);
}

C.5.12 The write_misc_files function.

The write_misc_files function writes several input files that are read by the PLL
FORTRAN executable. Some of the files are written using fprintf function calls while
others are written by calling functions described elsewhere in this appendix. The function
receives no arguments.

void write_misc_files(void)

{

* declare variables that are defined in the pil.c file and that will be used in this function *
*e d /

extern float pbd_skew{max_rad][max_comp], pbd_rake[max_rad]{max_comp], damping,
horsepower, thrust_coefficient;

430

cxtern it pbd_file_flag. NKEY, MKEY, MRPIN[max_comp), estimate_damping | ! ‘
optimize_rpm, optimize_diameter, meximize thrust, unload_flag, match EAR flag, ¥
eval_sowaxi_stator, 80_funtime_options; »
* Variable declarations * ¥
b g » ,’ "
FILE *out; {/pointer to a file structure §
stract daed; idate stracture
struct time t; /Rime structure !
imt k; /Roop counter

These three blocks of code open, write, and close temporary default settings,
project, and input files. ’
out = fopen(“temp.def”, "w");

write_default_file(out);
fclose(out);

out = fopen("temp.pg”, “w");
write_project_file(out);
fclose(out),

out = fopen(“temp.inp®, "w"); »’
write_input_file(out); T
fclose(out);

= If the pbd_file_flag flag is set, a temporary file that is used by the PLL FORTRAN .
executable to write the PBD B-spline file is written. |
iftpbd_fil_flag){ | |
out = fopen("PBDDEF.DAT", *w*); .
fprintflout” %d %dn”, NKEY, MKEY); 5

for(k=0; k<MRPIN[0}; k++)
fprintfiout,” %{ %f\n", pbd_skewfk]{0}, pbd_rake[kI[0]); (3

fclose(out);

431

The next five blocks of code open, write, and close temporary files that are used by
the PLL FORTRAN executable. Functions described elsewhere in this appendix are used
in these blocks.

out = fopen(“wakecalc.set”, “w"),
write_wakecalc_file(out);
ﬂou(om).

out = fopen(“ductforc.set”, “w");
write_ductforc_file(out);
ﬂola(on).

out = fopen(“thsttorq.set”, “w")
write_thsttorq_file(out);
fclose(out);

out = fopen("sbsrules.set”, "w");
write_absrules_file(out);
ose(out);

out = fopen("wkalcirc.set”, "w"),
write_wkalcirc_file(out);
fclose(out);

The last four blocks of code write files used by the PLL FORTRAN executable by

out = fopen("damp fig*, “w")

fprintflout,"%d \n%L" cstimaee_damping_flag,damping);

fclose(out);

out = fopen(“options.set”, "w");
if{optimize_rpm)

fprintflout,"0\n");

ifloptimize_diameter) fprintfiout," 1\n");
if{maximize thrust) fprintf{out,"2\n");
if{unioad_fiag) fprintfout,"3\a");
ifimatch EAR flag) fprintf{out,"4\n"),
ifeval_nonaxi_stator) fprintf{out,"S\n");
if{no_runtime_options) fprintRout,"99\n");

432

.i
i

fprintRout,"%N\a", horsepower),
fprintf{out,"%\a", thrust_cocfficient);
fclose(owt);
out = fopea("pbd.set", “w”);

fprintflont,"%d\n" pbd_file_fiag);
Scloss(out);

out = fopen(“time.dat”, “w”);
gettimo(&1);

fprislont,” %024:502d\a", Lti_hour, t.ti_min);

gordaso(&d);

fprinflont,” %024/%024/%02d/n°, d.da_mon,d.da_day,d.da_year);
fclose(out);

i A S R AR AT B AT R SO

}

C.5.13 The read_blade_file function.
The read_blade_file function reads standard PLL blade data files. It receives a ’

pointer to a FILE structure and the component number for which the file is being read. ;

The function is compatible with files written by and for the original FORTRAN version of

PLL and files written by the MIT-PLL Editor program. ‘ Q
void read_blade_file(FILE *blade, int component)
{
‘deduentﬂlsthﬂmdeﬁnedin!hepﬂ.cﬁhmdthﬂwiﬂbeusedinthisﬁmct;on . '
extera int MRPIN[max_comp], MBIN[max_comp}; :
extern flom XRPIN[max_rad](max_comp], XCHD{max_rad]{max_comp], »
XTHK[max_rad][max_comp], XCD{max_rad}[max_comp], !
XGimax_rad]{max_comp], BAR[max_comp],
BANGIN[max_ang]{max_comp], BCHDIN[max_ang]{max_comp], ,
BTHKIN[max_ang){max_comp}, BCDIN[max_ang][max_comp),
BCIRIN[max_ang){max_comp};
* Varisble declarations . t
o8 %/
it M, /Moop counter b
nextchar =]; //integer variable for reading g
// data character by character s
433 ;

B mw» Rl SRR T el

= g i o

l/scrap first line
while (nextchari=13&&acxichari=10)
nexichar = getc(blade);
nexichar =1;
//scrap second line
while (aextchari=13&&nexichari=10)
nexichar = getc(blade);
nexichar =1;
Ifscrap third line
while (nextchari=13&&nextcharl=10)
nextchar = getc(blade);
nextchar =1;
//read in the number of radii
facanfiblade,"%d *,&MRPIN[component]);
/lscrap fifth line
while (nextchari=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1;
/Noop through the components and read in the radii
for(M=0;M<MRPIN{component];M++)
fscanfiblade,"%f *,&XRPIN[M][component});
{/scrap seventh line
while (nextchar!=13&&nextchari=10)
nextchar = getc(blade); ~-
nextchar =1;
/Iread in the blade chords
for(M=0;M<MRPIN[component];M++)
fscanfiblade, "% *,&XCHD[M]{componeat]);
//scrap ninth line
while (nextchar!=13&&nextchari=10)
nextchar = getc(blade);
pextchar =1;
//read in the blade thicknesses

434

.i
‘l

® o

for(M=0; M<MRPIN[componcat], M++)
facanf(blade, “%f ", &XTHK [M]{componeat]);
I//scrap clevesth line
while (nextchari=13&&sexichari=10)
nextchar = geic(biade);
nextchar =1,
//vead in the blade viscous drag coefficieats
for(M=0;M<MRPIN{component]; M++)
fscanfiblade, "% *,&XCD{M]|component]),
I/scrap thirteenth line
while (nextchari=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1;
//vead in the blade circulation
for(M=0; M<MRPIN|component];M++)

fscanf(blade, "%f *,&XG{[M]{component]);

/Af the next character is not the EOF, then read in the ring data

if{getc(blade)!=EOF) {
I/scrap fifteenth line
while (nextchar!=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1,
//read in the angular extent of the ring
fscanf{blade,"%f *,&BAR[component]),
{/scrap seventeenth line
while (nextcharl=13&&nextchari=10)
nextchar = getc(blade);
nextchar =1;
//read in the number of angles

fscanfiblade,"%d *,&MBIN|component]);

435

TR

'.zn T R eE

. a',-o ST PINPA R

‘

D’

i
i
b

/fscrap ninctocath line
while (nextchari=13&&nextchari=10)
nexichar = getc(blade);
nexichar =1;
//read in the angles
for(M=0;M<MBIN[componeat], M++)
facanf{blade, "% *, &BANGIN[M]|component]);
//scrap twenty-first line
while (nextchari=13&& nextchari=10)
pextchar = getc(blade);
pextchar =1;
//read in the ring chords
for(M=0;M<MBIN[component];M++)
fscanfiblade, "%f *,&BCHDIN[M]|component]);
//scrap twenty-third line
while (nextchar!=13&&nextchari=10)
nextchar = getc(blade);
nextchar =1,
{/read in the ring thicknesses -
for(M=0;M<MBIN[component]};M++)
fscanf{blade, "% ", & BTHKIN[M][component]),
//scrap twenty-fifth linc
while (nextchari=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1,
//read in the ring viscous drag coefficients
for(M=0;M<MBIN[component];M++)
fscanfiblade,"%f *,&BCDIN[M](component]);
//scrap twenty-seventh line
while (nextchar!=13&&nextchar{=10)

nextchar = getc(blade);
nextchar =1;

436

e o

E
by

I/read in the ring circulations : ’
for(M=0:M<MBIN[componeat];M++) g

facanf(blade, “%f ", &BCIRIN[M]{component]); ; @

§
} i
) |

C.5.14 The read_wake _file function.
The read_wake_file function reads standard PLL wake data files. It receives a

pointer to a FILE structure and the component number for which the file is being read.
The function is compatible with files written by and for the original FORTRAN version of
PLL and files written by the MIT-PLL Editor program. .
void read_wake_file(FILE *wake, int component)
{
* declare variables that are defined in the pll.c file and that will be used in this function * » ©
extern int NRWIN[max_comp), NHARMA|[max_comp], NHARMR|[max_comp],
NHARMT[max_comp]; .
extern float XRWIN[max_wake_rad]{max_comp], .'
XVA[max_wake_rad}[max_wake_har][2]{max_comp], .
XVR[max_wake_rad][max_wake_har]{2]{max_comp],)
XVT{max_wake rad][max_wake_har]|2]{max_comp];
* Variable declarations . ’
/ .
int M,J, /Noop counters
nextchar = 1; I/integer variable for reading :
/1 data character by 1
character ,
while (nextcharl=13&&nextcharl=10) :
nextchar = getc(wake); !
nextchar =1; 'b .
b
//scrap second line f

437

/fscrap third line
while (nextchari=13&&nextchari=10)

nexichar = getc(wake);
nextchar =[;

//read in the number of radii
facanf{wake,"%d ", &NRWIN|component]);

liscrap fifth line
while (nextchari=13& &nextchar!=10)

nextchar = getc(wake);
nextchar =1;

//vead in the NUMBER OF HARMONIC COEFFICIENTS (axial, radial, tangential)
fscanf{wake, "%d ", &NHARMA [component]);
fscanf{wake,"%d *,&NHARMR{component});
fscanfiwake,"%d *, &NHARMT|component]);

//scrap seventh line
while (nextchari=13&&nextchari=10)

nextchar = getc(wake);
nexichar =1;

//read in the NONDIMENSIONAL RADII FOR INPUTS
forM=0;M<NRWIN[componeat]; M++)

fscanf{iwake, "%f ", &XRWIN[M][component]);

I/scrap a line
while (nextchar!=13&&nextchar{=10)

nextchar = getc(wake);
nextchar =1;

/iread in the AXIAL COSINE HARMONIC COEFFICIENTS
for(J=0;J<NHARMA [component]; J++){

for(M=0;M<NRWIN|component];M++){
fscanf{wake,"%f *,&XVA[M][J][0]{component]);

}

438

}
Ifscrap a line
while (nextchari=13&&nextchari=10)
nextchar = getc(wake);
nextchar =1;

/iread in the AXIAL SINE HARMONIC COEFFICIENTS
for(J=0,J<NHARMA [componcat].H+){
for(M=0;M<NRWIN[component];M++){
fscanfiwake,"%f *.&XVA[M][J]{1][component]);

}
}

/fandle the radial cocfficients if there are any
if(NHARMR [component}>0){

{Iscrap a line
while (nextchar!=13&4&nextchar!=10)
l‘mﬂmn:lx;wlmr = getc(wake),

//read in the RADIAL COSINE HARMONIC COEFFICIENTS
for(J=0,J<NHARMR[component],J++){

for(M=0;M<NRWIN{component];M++){

fscanfiwake,"%f ", &XVR[M]{J][0][component]);

}
}
{/scrap a line
while (nextchar!=13&&nextchar!=10)
nextchar = getc(wake),
nextchar =1;

/fread in the RADIAL SINE HARMONIC COEFFICIENTS
for(J=0,J<NHARMR[component};J++){
for(M.~0;M<NRWIN[component};M++){

fscanf{wake, "% *,&XVR[M](J]{1]{component]);

439

153 v AR = e 1 Sp sy e gl (R

LR P

o o

] } »
//handle the tangential cocfficicnts if there are any
ifINHARMT [component]>0){
; L
Ilfscrap a line
while (nextchari=13&&ncxichart=10)
nextchar = getc(wake);
nextchar =1; »
]

Ifread in the TANGENTIAL COSINE HARMONIC COEFFICIENTS
for(J=0;J<NHARMT]component];J++){
for(M=0;M<NRWIN[component];M++){
fscanf{wake, % *,&XVTM](J]1{0](component]);
}

P //scrap a line ’
while (nextchar!=13&&nextchar!=10)
nextchar = getc(wake);
nextchar =1;
¢ //read in the TANGENTIAL SINE HARMONIC COEFFICIENTS ’ :
for(J=0;J<NHARMT [component];J++){
for(M=0;M<NRWIN[component];M++){
<~
¢ fscanf{wake,"%f ", &XVTM]J][1}icomponent]); ’
}
}
}
} »
¢

C.5.15 The read_input_file function.

The read_input_file function reads standard PLL input data files. It receives a
pointer to a FILE structure. The function is compatible with files written by and for the »
original FORTRAN version of PLL and files written by the MIT-PLL Editor program.

440

} void read_input_filo(FILE *biade)
{
' oo .
* declare varisbles that are defined in the pll.c filc and that will be used in this function *
. ssvsane o

‘ extern char RUN_ID{21], image_hub, image duct, ringed_propeller{max_comp],
BLDIN{max_comp]{21], WKIN[max_comp][21];

exiern int use_cwrr_blade, NBLADE[max_comp]), LDEV;

extern fiost DCHD, DCD, DTHK, DDIAM, XDUCT, VS, RHO, DSHAFT, fr
XDLOC[max_comp], XDIAM[max_comp}, XWDIAM[max_comp]; ’

/ " . .
* Variable declarations

*

int M,
nextchar = 1;

*/

/Nloop counter
l/integer variable for reading
// data character by character

{Iscrap first line
while (nextchar!=13&&nextchari=10)
nextchar = getc(blade);
nextchar =1;
{/scrap second line
while (nextchar!=13&&nextchari=10)
nextchar = getc(blade),
nextchar =1;
//read in the ship speed
fscanf(blade, "%, & VS),
{Iscrap the rest of the line
while (nextcharl=13&&nextchari=10)
nextchar = getc(blade);
pextchar =1;
//read in the fluid density
fscanf(blade, %" &RHO);
//scrap the rest of line

while (nextchari=13&&nextchar!=10)
nextchar = getc(blade);

441

nexichar =1;
//read in the shaft centerline depth
facanfiblade, “%f* . ADSHAFT),
//scrap the rest of line
while (nextchari=13&&nexichari=10) »
¢ nextchar = getc(blade);
nextchar =1;
//read in the number of components
fscanfiblade,"%d", &LDEV),
I//scrap the rest of line
while (nextchari=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =32;
e //ffind out if an image hub is to be used »

while (nextchar==32||nextchar==9||nextchar==10j|nextchar—13)
nextchar = getc(blade);)

if{nextchar==(int)("Y")|inextchar==(int)('y"))
image hub =Y";

else
image _hub="N";

nextchar =1,

{/scrap the rest of line

while (nextcharl=13&&nextchar!=10)
nextchar = getc(blade);

nextchar =32;

//ﬁndmifmimagedtmisfobeused,miswhﬂemmentmjeasspmtabs,wﬁagetetums,andline
// feeds so that extra lines in an input file won't crash the program

while (nextchar==32|jnextchar==9||nextchar==10||nextchar—13)
nextchar = getc(blade);

»
e
if(nextchar==(int)("Y"){jnextchar==(int)('y"))
image duct ="Y";
else
image duct='N"; []
e
nextchar =1;
442

//scrap the rest of line
while (aexschari=13&&acxichari=10)
nexichar = getc(blade),
acxichar =32,
/hread the duct data if there is one
ifimage_duct == Y") {
/fread the duct chord
fscanfibiade, "% " &DCHD),
/iscrap the rest of line
while (nextchari=13&&nextchar!=10)
pextchar = getc(blade);
nextchar =1;
//read the duct drag coefficient
fscanfiblade, "% ,&DCD),
//scrap the rest of line
while (nextchar!=13&&nextcharl=10)
pextchar = getc(blade);
nextchar =1;
//read the duct thickness
fscanf{blade, %" ,&DTHK);,
//scrap the rest of line
while (nextchari=13&&nextcharl=10)
nextchar = getc(blade);
nextchar =1,
//read the duct diameter
fscanfiblade, "%f",&DDIAM),
//scrap the rest of line
while (nextchari=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1;
{/read the duct axial location

fscanf{blade, "%, &XDUCT);

443

.i

/fscrap the rest of lime |
nexichar =32,
}
//handle both propellers, if there are two
for(M=0;M<LDEV . M++){
iflimage_duct == (char)(78)) {
//find out if the pmpeller is ringed »

while (nextchar==32|nextchar==9||nextchar==10j|nextchar==13)
nextchar = getc(blade);

if{nextchar==89j|nextchar==121)
] ringed_propeller[M] = (char)(89);
else
ringed_propeller{M] = (char)(78);
nextchar =1;
q l/scrap the rest of line ’
while (nextchar!=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1;
‘ } . '.'.'
//read the axial location if there is more than 1 propeller
iRLDEV>1){
] fscanfiblade, "%f",&XDLOC[M]),
//scrap the rest of line
while (nextchari=13&&nextchari=10)
nextchar = getc(blade);
nextchar =1;
}
XDLOC[M]=0.0;

clse

//read the number of blades

facanf{blade,"%d",&NBLADE[M]);

/fscrap the rest of line
while (aexichar!=13&&acxichari=10)
aexichar = getc(blade),
aexicher =1;
/fread the component diameter
ficanffblade, "I £ XDIAM{MY]);
l/scrap the rest of line A
while (nexichari=13&&nextchari=10)
nexichar = getc(blade);
nexichar =1;
//read in the blade file name
fscanf(blade,"%s" & BLDIN[M*21]);
I/scrap the rest of line
while (nextchar!=13&&nextcharl=10)
nextchar = getc(blade);
nextchar =1;
//read the wake diameter
fscanf{blade, "%, &XWDIAM[M]),
//scrap the rest of line
while (nextchar!=13&&nextchari=10)
nextchar = getc(blade);
pextchar =1;
/fread in the wake file name
fscanf{blade, “%s", & WKIN[M*21]);
//scrap the rest of line
while (nextchar!=13&&nextchari=10)

nextchar = getc(blade);
nextchar =1;
}

C.5.16 The read_project_file function.

445

‘-A

The read_project_file function reads PLL project files are that written in response
the File|Save Project selection from the main menu. The function receives a pointer to a
FILE structure. ﬁ

{wid read_project_file(FILE *blade) ’

s
* declare variables that are defined in the pll.c file and that will be used in this function *

1
[}

extern char RUN_ID{21}, INPUTFILE{20];

extern it LDEYV, optimize_rpm, optimize_diameter, maximize thrust,no_runtime_options,
effective_wake_flag, tunnel_operation_flag, duct_forces flag,
duct_ring_vortex_forces_flag, circ_opt_wake alignment flag,
estimate_duct_circulation_flag, estimate_damping_flag, NPANEL,)
contraction_ratio_flag, wake_alignment flag,
circulation_optimization_flag, chord_optimization_flag,
duct_mean_line_flag, empirical_vcd_flag, propeller_type_flag,
pmpelletmatenal

extern float horsepower, RPM[max_compl], thrust_coefTicient, >
estimated_duct_circulation, torque_ratio, damping,
propelier_duct_thrust_ratio, propeller_ring_thrust_ratio,
thrust_estimate, CLMAX, TCHDMAX, HUBCHD|[max_comp], TTIP, CDCON,
RHVOR, PL1, PL2, CONRAT, GAPFAC,
material_constant{user_defined_material+1][2], rake[2];

. 4
! i
* Varisbie declarations *

* /

int M, i, //loop counters
nextchar = 1; -~¥/integer variable for reading >
// data character by

//scrap first line
while (nextcharl=13&&nextchari=10)
nextchar = getc(blade); ’
nextchar =1,
//scrap second line
while (nextchari=13&&nextchar|=10)

nextchar = getc(blade);)
nextchar =1;

//read in the input filename

frcanf (blade,"%20s" INPUTFILE),

l/scrap the rest of the line
while (nexichari=13&&nexichari=10)
nexichar = getc(blade);
aexichar =1;
Ivead in the RUN ID
for(=0;i<20;i++) RUN_ID{i}=getc(blade);
RUN_ID{20}=NULL;
//scrap the rest of line
while (nextchari=13&&nextchari=10)
nexichar = getc(blade);
nextchar =1;
//read in the number of components
facanfiblade,“%d" &ALDEV);
I/scrap the rest of line
while (nextchari=13&&nextchar!=10)
pextchar = getc(blade);
nexichar =32;
//vead in the rpm for both propellers, if there are two
for(M=0;M<LDEV:M++) {
fscanfiblade, "% ARPM[M]);
//scrap the rest of line ‘
while (nexichar!=13&&nexichari=10& & nextchari=EOF)
nextchar = getc(blade);
nextchar =1;
}
//this if statement recognizes bare project files
ififscanfiblade, "%d", &optimize_rpm)!~EOF){
//scrap the rest of line

while (nexichari=13&&nexichari=10)
nextchar = getc(blade);

447

.“‘

e P o S

.v'
,.I

e R R

aexichar =1,
/iread the optimize diameter flag »
facanfiblade, “%d", &optimize diameter), q
l/scrap the rest of line
while (nextchari=13&&nextchari=10)
nexichar = getc(blade);
nexichar =1;
//read the Maximize thrust flag
focanfiblade,"%d" . &maximize_thrust); »
{/scrap the rest of line
while (nextchari=13&&nextchar!=10)
nextchar = getc(blade),
nextchar =1; »
//read the Horsepower for maximizing thrust
fscanfiblade, "%, & horsepower);
/Iscrup the rest of line
while (nextcharl=13&&nextchari=10)
nextchar = getc(blade);
nextchar =1;
//read the Thrust coefficient for maximizing thrust D’
fscanf{blade, *%f", &thrust_coefficient); L
//scrap the rest of line
while (nextchar!=13&&nextchari=10)
nextchar = getc(blade);
nextchar =1;
//read the No runtime options flag
fscanf{blade,"%d",&no_runtime_options); »
//scrap the rest of line
while (nextchari=13&&nextchari=10)
nextchar = getc(blade);
nextchar =1,
//read the Effective wake flag
fscanfiblade,"%d", & effective_wake_flag);

448

o Nt ey € o e S

lfscynp the vest of line
while (m!-xw-w)
= getc(biade),
m-l;
/fread the Tunmel operation flag

facanf(blade, "%d" Atunnel_operation_flag);
Ifscrap the rest of line
while (nexichari=13&&ncxichari=10)
pextchar = getc(blade);
pextchar =],
//read the Duct forces flag
fscanf(blade, “%d" &duct_forces_flag),
Niscrap the rest of line
while (nextchar!=13&&nextchar!=10)
pextchar = getc(blade);
nextchar =1,
//read the Duct ring vortex forces flag
fscanfiblade, *%d" &duct_ring_vortex_forces_flag);
{/scrap the rest of line
while (nextchar!=13&&nexichar!=10)
pextchar = getc(blade);
nextchar =1,

//read the Circ opt wake alignment flag

fscanf{blade,"%d",&circ_ _wake_alignment_flag);

//scrap the rest of line
while (nextchari=13&&nextcharl=10)
pextchar = getc(blade);
nexichar =1;

/fread the Estimate duct circulation flag

fscanfiblade,%d" &estimate_duct_circulation_flag);

//scrap the rest of line
while (nextchart=13&&nextchar=10)

449

.'i

scxichar = getc(blade);
acxichar =];

//read the Estimate duct circulation flag
facanfblade,"%d" &estimate damping flag);
//scrap the rest of line
while (nexichari=13&&nextchari=10)
nextchar = getc(blade);
nexichar =1;
//read the Estimated duct circulation
fscanfiblade, "%", &estimated_duct_circulation);
I/scrap the rest of line
while (nextchar!=13&&nextchar!=10)
nexichar = getc(blade);
nextchar =1;
//read the Torque ratio
fscanfiblade,“%{", &torque_ratio);
//scrap the rest of line
while (nextchar!=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1;
//read the Damping
fscanfiblade,"%{", &damping);
//scrap the rest of line
while (nextcharl=13&&nextcharl=10)
nextchar = getc(blade);
nextchar =1;
//read the Propeller duct thrust ratio
fscanf{blade,"%4f", &propeller_duct_thrust_ratio);
/fscrap the rest of line
while (nextchar!=13&&nextchari=10)
nextchar = getc(blade);
nextchar =1;

//vead the Propeller ring thrust ratio

450

)7

@

facanfblade,"%" &propelier_ring thrust_ratio);
/fscrap the rest of line

o o8

while (nextchari=13&&nexichari=10)
nexichar = getc(blade);
nexichar =1,
//read the Thrust estimate
facanfRblade, "% &thrust_estimate);
//scrap the rest of line
while (nextchari=13& & nextchari=10)

nextchar = getc(blade);
nextchar =1;

T AT s wm‘! s

//read the maximum lift coefficient
fscanf(blade, "%, & CLMAX);)
//scrap the rest of line
while (nextchari=13&&nextchar!=10)
nextchar = getc(blade);) PY
pextchar =1;

//read the maximum thickness to chord ratio

fscanf{blade, "%f" & TCHDMAX);
//scrap the rest of line Q'
while (nextchar!=13&&nextchar!=10) '
nextchar = getc(blade);
pextchar =1;
/lread the minimum chord/diameter ratio at the root for each component '
for(M=0;M<LDEV:M-++){
Jiscrap the rest of line ‘
while (nextchar!=13&&nextchar!=10&&nexicharl=EOF)
nextchar = getc(blade); r
) i
Iiread the tip thickness to chord ratio o
451 :
b

facanf(blade, "% . &ATTIP),
/iscrap the rest of line
while (mextchari=13&&nextchari=10)
aexichar = geic(blade);
nexichar =1,
/fread the sumber of panels
facanf{blade,"%d" , &NPANEL);
//scrap the rest of line
while (nexichar|=13&&nextchari=10)
nextchar = getc(blade);
nextchar =1;
//read the drag coefficient multiplier
fscanfiblade, "% f",& CDCON);
//scrap the rest of line
while (nextchari=13& &nextchari=10)
nextchar = getc(blade);
nextchar =1;
//read the hub vortex radius to hub radius ratio
fscanf(blade, "%f", &RHVOR);
//scrap the rest of line
while (nextchari=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1;
//read the first Lagrange multiplier
fscanf(blade, "%f",&PL1),
//scrap the rest of line
while (nextcharl=13&&nextchari=10)
nextchar = getc(blade);
nextchar =1;
//read the second Lagrange multiplier
fscanf(biade,"%f",&PL2);
//scrap the rest of line

452

while (nextchar!=13&&nextchari=10)
nextchar = getc(blade);
nextchar =1;
//read the contraction ratio flag
fscanfiblade, "%d", &contraction_ratio_flag);
/Iscrap the rest of line
while (nextchar!=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1;
//read the conrat
fscanfiblade,"%™ & CONRAT);
/Iscrap the rest of line
while (nextchar!=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1;
//read the wake_alignment_flag
fscanf(blade,"%d" , &wake_alignment_flag);
//scrap the rest of line
while (nextchar!=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1,
//read the circulation_optimization_flag
fscanf{blade,"%d" &circulation_optimization_flag);
//scrap the rest of line
while (nextchar!=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1;
//read the chord_optimization_flag
fscanf(blade,"%d",&chord_optimization_flag);
//scrap the rest of line
while (nextchar!=13&&nextchar!=10)

nextchar = getc(blade);
nextchar =1;

453

{/read the duct_mean _line_flag
facanf(blade,"%d", &duct_mcan_line_flag),
//scrap the rest of line
while (nextchar!=13&&nextchari=10)
nextchar = getc(blade);
nextchar =1;
//read the empirical_vcd_flag
' facanfiblade, "%d*, &empirical_ved_fiag);
//scrap the rest of line
while (nextchar!=13&&nextchar!=10)
pextchar = getc(blade);
nextchar =];
//read the duct tip gap factor
fscanfiblade,"%f",& GAPFAC),
//scrap the rest of line
while (nextchar!=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1;
//read the propeller_type flag
fscanf(blade,"%d" &propelier_type_flag);
//scrap the rest of line
while (nextchart=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1;
//read the propeller_material
fscanfiblade, "%d",&propeller_material);
//scrap the rest of line
while (nextchari=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1;
//read the user defined propeller material constants
fscanf(blade," %", &material_constantfuser_defined_material}[0]);

//scrap the rest of line

454

-
PP

while (nextchari=13&&nextchari=10)
nextchar = getc(blade);
pexichar =1;

-
P ;-’~." L T g

facanfiblade, "%I*, &material_constant{user_defined_material]{1]);
I/scrap the rest of line :
while (nextcharl=13&&nextchari=10) r'
4 nextchar = getc(blade);
nextchar =1,
//read the rake at hub and tip for abs calculations

fascanf{blade, %", & rake[0]); »

4
/scrap the rest of line
while (nextchar!=13&&nextchar!=10)
nextchar = getc(blade);
nextchar =1
‘ ’
fscanfiblade, %", &rake[1]);
}
}
(] []

C.5.17 The read_plot_file function.
The read_plot_file function reads plot files that are written by the FORTRAN

. executable. It receives a pointer to a FILE structure as an argument. »
void read_plot_file(FILE *plot)
{
- / * L]
¢ * declare variables that are defined in the pll.c file and that will be used in this function * ’
* * /
extern int number_radii[max_comp];
« extern float RADIUS|max_comp}[max_rad], CHORDINPUT[max_comp]{max_rad], »
PITCHANGLEUNDISTURBED[max_comp][max_rad},
CHORDCALC[max_comp]{max_rad],
PITCHANGLEINDUCED{max_comp][max_rad],
UAINEFFECTIVE[max_comp][max_rad}, UTIN[max_comp][max_rad],
P UAINDUCED|max_comp][max_rad]), UTINDUCED[max_comp][max_rad], »

THICKNESS|{max_comp}[max_rad}, CIRCULATIONINPUT[max_comp][max_rad],

455

DRAG[max_comp]{max_rad), CIRCULATIONCALC{max_comp][{max_rad],

LOCALCL{max_comp){max_rad}, LOCALCT{max_comp]{max_rad], »
¢ LOCALOQ{max_comp]{max_rad}, CAVITATIONNUMBER|[max_comp][max_rad],

UAINNOMINAL[max_comp}[max_rad];

* Varisbie declarations .
L . * sss / »
int component, {//component#, 1 or 2
i; /Noop counter
. //read in the component number »
fscanfiplot,"%d *,&component);

//decrement the component number so that data for component number 1
/1 will be stored in the [0] variables (C programming convention)

¢ component--;
{/read in the number of radii
fscanf{plot,"%d ",&number_radiifcomponent]);
¢ /Noop through the radii »
for(i=0;i<number_radii[component];i++)
//read in the data for each parameter at the current radius
e fscanf(plot,"%f %f %L %f %8 %I %L %l %f”, &RADIUS[component][i], »
& CHORDINPUT|component][i], &THICKNESS[component][i],
&DRAG][component]{i], & CIRCULATIONINPUT [component][i],
&UAINNOMINAL [component][i], &UAINEFFECTIVE|[component][i],
&UTIN[component]{i], &PITCHANGLEUNDISTURBED|component][i]);
e /Nloop again through the radii and read the rest of the parameters ’
for(i=0;i<number_radii{component];i++)
fscanf{plot,"%l % % %f %l %f %l %f %f %™, &RADIUS[component][i],
&CHORDCALC[component]{i}, &PITCHANGLEINDUCED{[component][i], »
e &CIRCULATIONCALC{component][i], &UAINDUCFD{component][i],
&UTINDUCED{component](i}, &LOCALCL|component]{i],

&LOCALCT{component][i}, &LOCALCQfcomponent][i],
&CAVITATIONNUMBER{component]{i]);

456

C.5.18 The read_glauert_file function.
The read_glavert_file function reads data from the glauert.coe file written by the
FORTRAN executable to be used should the user decide to unload the hub and/or tip of a

hubless propeller without a ring or a zero gap duct. The function receives a pointer to a

FILE structure as an argument. v

void read_glauert_file(FILE *blade)
{

7 L s
* declare variables that arc defined in the pll.c filc and that will be used in this function *

. sose/

extern int NGC,LDEV;

extern float GC[max_comp]imax_giau_coef];

I
* Variable declarations o * o

see . se/

int ij {/counters for the for loops
{Nloop through the components

for(i=0;i<LDEV;i+¥) {
/iread in the number of coefficients for each component

fscanf{blade,"%d" . &NGC);
/Noop through and read in the coefficients

for(7=0,j<NGC;j++)

fscanf(blade, "%f ", &GCli}(j]);

}

C.5.19 The read_unload_dat_file function.
The read_unload_dat_file function reads data from the unload.dat file written by
the FORTRAN executable should the user decided to unload the hub and/or tip of a

457

8 PR R R T W

propelier that has a ring or a zero gap duct or an image hub. The function receives a
pointer to a FILE structure as an argument.

void read_unload_dat_filo(FILE *blade)
{

PPy

7
¢ declare variables that are defined in the pli.c file and that will be used in this function *
/

extern int LDEV;

extern float hub_circ{max_comp), tip_circimax_comp), hub_radius[max_comp],
tip_radius{max_comp], RZ[max_comp};

/ * *e
* Variable declarations .
* /

int i /Noop counter
/Noop through the components
for(i=0;i<LDEV;i++) {
//read in for each component:
/circulation nearest the hub
fscanfiblade,"%f" &hub_circli]),
//radius nearest the hub
fscanf(blade, %", &hub_radiusli]);
//hub radius -
fscanfiblade, %™ &RZ[i]);
/circulation nearest the tip
fscanf{blade, "%f™ &tip_circli]);
//radius nearest the tip
fscanf(blade, %", &tip_radius]i]);
}

458

C.5.20 The initialize function.
. The initialize function deletes unnecessary data files and initializes global variables
in order to prepare PLL to open a new project.

(vddiﬂﬁllidvdd)

I
* declare variables that are defined in the pll.c file and that will be used in this function *

{
L

extern int plot_mplotmﬂag.dnw_pht_ﬂu.nnlod flag, optimize_rpm, ;
‘ optimize_diameter, maximize thrust, match EAR _flag, use_curr_blade, »
wﬂmmmmmm_ﬂa&wm&wm
estimate_duct_circulation_flag, estimate_damping flag, circ_opt_wake_alignment_flag,
NPANEL, contraction_ratio_flag, wake_alignment_flag, circulation_optimization_flag,
chord_optimization_flag, duct_mean_line_flag, empirical_ved_flag,
propeller_type_flag,)
. propeller_maderial, project_flag, effective_wake_flag, tunnel_operation_flag, »
duct_forces_flag, duct_ring_vortex_forces_flag, Scroll_Pos, opt_comp;

extern float horsepower, thrust_coefficient, RPM[max_comp], CONRAT, GAPFAC,
material_constant{user_defined_material+1]{2], rake[2], thrust_estimate, torque_ratio,
damping, estimated_duct_circulation, propeller_duct_thrust_ratio,
‘ propeller_ring_thrust_ratio, CLMAX, TCHDMAX, TTIP, CDCON, [
HUBCHD[max_comp], RHVOR, PL1, PL2,
GC_UNLOAD_FRAC|max_comp]{max_glau_coef};

extern char ringed_propellerimax_comp], RUN_ID|21), INPUTFILE|}20}], PROJECTFILE|[20],

[
* Variable declarations .

459

/initialize global variables
for(M=0;M<max_glan_coef;M++){
GC_UNLOAD_FRAC0}[M]=0.0,
GC_UNLOAD_FRAC{1][M]=0.0;
}

ringed_propeller{0)='N,
ringed_propeller{1]='N",

plot_page=0;
plot_component_flag=0, »
draw_plot_flag=0;
unioad_flag=0;
optimize_rpm=0; ®
optimize_diameter=0;

' meich_EAR_flag=0; ’
wse_cury_blado=0;

|

eval_sonaxi_stator=0; !
no_reatime_options=1; ‘ |
horsepower=0.0;
threst_coeflicient=0.0;
output_fiag=0; »
componcnt_flag=0; |
Scroll_Pos = 0;

strcpy(RUN_ID,™); ’
strepy(INPUTFILE,™);

strepy(PROJECTFILE, "),

project_flag =0; I

RPM[0}=100.0;
RPM[1)=100.0;

effective_wake_flag = 0;
thrust_estimate = 0.69;
tunnel_operation_flag = 0;
duct_forces_flag = 1;
duct_ring_vortex_forces_flag = 1,
torque_ratio = 1.0;
estimate_duct_circulation_flag = 0;
estimated_duct_circulation = 0.05;
estimate_damping_flag = 0;
damping = 0.0,
propeller_duct_thrust_ratio = 1.0;
propeller_ring_thrust_ratio = 1.0;

461

RHVOR =0.5;

PL1=-10;

PL2=0.0;

contraction_ratio_flag = 1;
CONRAT=1.0;
wake_alignment_flag = 1;
circulation_optimization_flag = 1i;
chord_optimization_flag = 1;
duct_mean_line flag = 1,
empirical_ved_flag = I;

GAPFAC = 1.0,
propeller_type_flag = 1.
propeller_material = mangancse_bronze;

material_constant{user_defined_material])[0]=70.0;
material_constant{user_defined_material]{1]=0.30;

rake[0)=0.0;
rake{1]=0.0;

Scroll_Pos = 0;

462

p’
Al

VI

C.5.21 The delete_files function.
The delete_files function deletes temporary data files according to the integer flag
passed as an argument. : q
void delete_filea(int file_flag)
{ iftfile_flag==pll_files)X{
//delete temporary files

W AT

" A g

S PR

unlink("nonaxi. har")

unlink(“nonaxi.for");

unlink("currpbd.pbd™);)
unlink("currpbd1.bsn");

unlink("currpbd2.bsn"); ,

if(file_flag==pbd_files){
//delete pre-existing pbd output files
unlink(*pbdout.cbd");
unlink(*pbdout.hub");
unlink("pbdout.cmv");

unlink(*pbdout.cmf*);)
unlink(“pbdout.tot”);

’7

463

APPENDIX C.6

The PLL and PBD FORTRAN programs.

-‘_u

» ¥
.

C.6 The PLL and PBD FORTRAN programs.

The MIT-PLL propeller design program uses lifting line theory in representing .
propellers as a set of straight, radially oriented lifting lines corresponding to the propeller @
blades. The geometry of the blades is represented in the form of a radial circulation
distribution. The program was developed at the MIT Marine Hydrodynamics Laboratory >

with support from the MIT Sea Grant College Program and the David Taylor Research
Center. For this reason the code will not be reproduced in whole or in part in this
document, either in its original form or as altered to be called by the PLL Windows™ »
application.
The YBD-14.2 propeller design program is the product of evolution from a series
of earlier codes developed at the MIT Marine Hydrodynamics Laboratory. The program »
was developed with support provided by the Office of Naval Research Graduate
Fellowship Program, the Office of Naval Research, and the David Taylor Model Basin.

As in the case of PLL, this code will not be reproduced in whole or in part in this ® q
document, either in its original form or as altered to be called by the PLL Windows™
application. |

For the purpose of the illustration of a FORTRAN code altered for operation in >’

conjunction with a Windows™ application, a portion of the VLMLE code discussed in

Chapter 2 and Appendix B is shown below. The FORTRAN code shown is used to allow

the user to interact with the program and provide keyboard input to set the number of »
panels to be used in modelling a foil. The first line of code writes a prompt to the

monitor.

The READ statement that follows causes the execution of the program to pause while the »
user selects and types an integer value on the keyboard, and presses "enter”. The program

then reads the value selected by the user and stores it in the variable MC. A testis

performed in the third statement. If the value suggested by the user falls outside of the »

465

acceptable range, execution of the program is redirected to statement 90 and the process
is repeated.

C
90 WRITE(*,'(" Enter number of pancls (Max:",14,")... *.$)") MSD

READ(*,*) MC
IF(MC.LT.5.OR.MC.GT.MSD) GO TO 90

The FORTRAN code shown below replaces the code described above in order to
adapt the original VLMLE code for use by a Windows™ executable. The first executable
line opens the INPUT.DAT file, a file written by the Windows™ executable, as logical
unit 2 to provide the input that is usually provided via terminal interaction. The READ
statement reads the first value from the INPUT.DAT file as the number of panels. There
is no need to test MC at this point to ensure that it is within the acceptable range, since
this action was performed by the Windows™ application. At some point later in this
program the INPUT.DAT file will be closed to complete the input process.

C——Open the input data file as unit 2
OPEN(2 FILE=INPUT.DAT', STATUS="UNKNOWN' FORM=FORMATTED")
C
C—-Compute vortex and control point positions and weight functions--—
C
C
READ(2,*) MC
C

Output functions are implemented similarly. Data that is normally written to the
screen, or to output text ﬁles:, or to plot files, is written to files in a format recognized by
the Windows™ application. As a preferable alternative, the Windows™ application
functions may be written to use output and plot files written by the unaltered FORTRAN

code. This alternative minimizes the work necessary to implement later revisions of the

@

original FORTRAN code for use by the Windows™ application. Both techniques were
employed in PLL.

467

APPENDIX C.7

PLL program listings.

468

' C.7 PLL program listings.

. Listings for the MIT-PLL Windows™ application, the MIT-PLL Editor program,

and the MIT-PLL Help program are included in this Appendix.

] C.7.1 MIT-PLL program listings.

The PLL Windows™ application includes 37 files. Listings for these files are
included with this document as Appendix C.7.1 on a 3.5 inch, IBM PC formatted, double

] sided, high density floppy disk. The files are saved in an ASCII text format which can be

read using a DOS text editor or any word processor capable of reading DOS text files.
The complete files of this and the other programs in this thesis are not included in the
. written text of the thesis in the interest of limiting the size of the document. These pages
are included with the listings in a file named README.TXT.
The files included on the disk are described below.

. PLLC -contains the WinMain, FrameWndProc, MDI Child Window
Procedure, WMCommand_Handler, scroll bar, and dialog box
functions.

. WRTEPBD.C -contains the write_pbdadmin_fi.¢ function.

PAINTHUB.C -contains the paint_hub function.
PAINTRDC.C -contains the paint_rdc function.

. PAINTVCP.C -contains the paint_vcp function.

PAINTTST.C -contains the paint_graphs and rotation_projection functions.
DELETE.C -contains the delete_files function.

. INITIAL.C -contains the initialize function.

READGLAU.C -contains the read_glauert_file and the read_unload_dat_file
functions.

] WRITEMISC.C -contains the write_misc_files and the write_pbd_files functions.

469

WRTEDEF.C

PAINTWAK.C
PRINTPLT.C
PAINTPLT.C
PAINTBLD.C
READWAK.C
READPLOT.C
READBLD.C
READPRIJ.C
WRTEPRJ.C
WRTEINP.C
READINP.C
PRINTOUT.C
PAINTOUT.C
WRITEOUT.C
PAINTGSP.C
PAINTCMV.C
PLL.DEF
PLLRC
HEADER.H
PLLH
README.TXT

~contains the write_default_file, write_wakecalc_file,
write_ductforc_file, write_thsttorq_file, write_absrules_file, and the
write_wkalcirc_file functions.

-contains the paintwake functior..

~contains the printplot and the drawprint functions.

~contains the paintplot and the draw functions.

-contains the paintbld function.

~contains the read_wake_file function.

~contains the read_plot_file function.

-contains the read_blade_file function.

-contains the read_project_file function.

-contains the write_project_file function.

-contains the write_input_file function.

~contains the read_input_file function.

-contains the printout function.

-contains the paintout function.

-contains the write_output_file function.

-contains the paint_gsp function.

-contains the paint_cmv function.

-the module definition file.

-contains definitions of the resources used in the PLL program.
-contains the #define and #include statements for the PLL program.
-contains the definitions of the Windows™ identifiers.

-contains a copy of these pages.

The following files are not readable text files.

PLL.ICO

-describes the icon used to represent the program in the

Windows™ Program Manager.

470

PLLBLD.ICO -describes the icon used to represent the Blade Viewer window in
the MDI Client window.

PLLOUT.ICO -describes the icon used to represent the Output Viewer window in
the MDI Client window.

PLLPLOT.ICO -describes the icon used to represent the Plot Viewer window in
the MDI Client window.

PLLWAKE.ICO -describes the icon used to represent the Wake Viewer window in
the MDI Client window.

PLL.PRJ -the project file read by the compiler.

PLL PIF -a program information file used by the Windows™ environment

to control how the PLL FORTRAN executable is run.
PBD.PIF -a program information file used by the Windows™ environment
to control how the PBD FORTRAN executable is run.
Also included with this appendix are are several blade, wake, stator, and overall
input files for use with PLL.

C.7.2 MIT-PLL Editor program listings.

The MIT-PLL Editor Windows™ application includes 25 files. Listings for these
files are included with this document as Appendix C.7.2 on a 3.5 inch, IBM PC formatted,
double sided, high density floppy disk. The files are saved in an ASCII text format which
can be read using a DOS text editor or any word processor capable of reading DOS text
files. The complete files of tfﬁs and the other programs in this thesis are not included in
the written text of the thesis in the interest of limiting the size of the document. These
pages are included with the listings in a file named README.TXT.

The files included on the disk are listed below.

PLLEDIT.C
ADDANGLE.C

471

sy S e v 37wt o SR ¢ e - et el

A

ADDRADILC

¢ COPY.C »
DBLCLK.C
DISCARD.C

¢ HEADER H ’
PAINTBLD.C
PAINTFIL.C

¢ PAINTSTA.C | »
PAINTWAK.C
PLLEDIT.DEF

(] PLLEDIT H »
PLLEDIT.RC
PRINTFIL.C

] READBLD.C ’
READINP.C
READSTAT.C

e READW2K.C »
WRTEBLD.C
WRTEINP.C

. WRTESTAT.C ’
WRTEWAK.C
README.TXT

e The following files are not readable text files. .
PLLEDIT.PRJ
PLLPRJ.ICO

472

C.7.3 MIT-PLL Help program listings.
The MIT-PLL Help Windows™ application includes 10 files. Listings for these

files are included with this document as Appendix C.7.3 on a 3.5 inch, IBM PC formatted,
double sided, high density floppy disk. The files are saved in an ASCII text format which
can be read using a DOS text editor or any word processor capable of reading DOS text
files. The complete files of this and the other programs in this thesis are not included in
the written text of the thesis in the interest of limiting the size of the document. This page
is included with the listings in a file named README . TXT.
The files included on the disk are listed below.
PLLHELP.C
HEADER.H
PAINTFIL.C
PLLHELP DEF
PLLHELP.H
PLLHELP RC
PRINTFIL.C
README.TXT
The following files are not readable text files.
PLLHELP.PR)
PLLHELP.ICO

This appendix also includes the text files displayed by the MIT-PLL Help program.
The files used in presenting the contents of the PLL and PBD User's Manuals are not
included, for the same reason that the PLL and PBD FORTRAN source code is not
included.

473

.‘i

474

